Mechanical Performance Analysis of Petroleum Derrick Substructure

2011 ◽  
Vol 105-107 ◽  
pp. 2121-2124
Author(s):  
Jun Feng Pei ◽  
Sheng Ying Deng ◽  
Guang Min Chen ◽  
Jian Zhang

In recent years, the self-elevating derrick substructure which with the characteristics of easy to install、remove and transfer are gradually replacing layer box, box block substructure, etc. The three-dimensional finite element model of the MXD-701 jack-up derrick and substructure, which is used to analyze static properties of the petroleum substructure under the six different working loads are built by the ANSYS finite element software. Meanwhile, the wireless structural testing system(STS-WiFi)is testing at the MXD-701 petroleum substructure. Then comparing of the model results and testing results. Analysis results indicate that the stress of the substructure at the two beam table is greatest, the stress of the upper part of the guy column is much greater, and others are low, but in general, the overall substructure can fit the requirements of the strength and intensity. The compared results can accurately reflect the project structure of the stress and strain. Then, we can get the capacity of the substructure in order to provide evidence to the security situation of the substructure. It will have great significance to enrich and develop the mast base design and safety assessment theory.

2011 ◽  
Vol 291-294 ◽  
pp. 3282-3286 ◽  
Author(s):  
Jiang Wei Wu ◽  
Peng Wang

In port crane industry, the surface hardening technique is widely used in order to improve the strength of wheel. But the hardening depth is chosen only by according to the experience, and the effect of different hardened depths is not studied theoretically. In this paper, the contact stresses in wheel with different hardening depth have been analyzed by applying three-dimensional finite element model. Based on this model, the ANSYS10.0 finite element software is used. The elastic wheel is used to verify the numerical results with the Hertz’s theory. Three different hardening depths, namely 10mm, 25mm and whole hardened wheel, under three different vertical loads were applied. The effect of hardening depth of a surface hardened wheel is discussed by comparing the contact stresses and contact areas from the numerical results.


Author(s):  
Naibin Jiang ◽  
Feng-gang Zang ◽  
Li-min Zhang ◽  
Chuan-yong Zhang

The seismic analysis on reactor structure was performed with a new generation of finite element software. The amount of freedom degree of the model was more than twenty millions. The typical responses to operational basis earthquake excitation were given. They are larger than those with two-dimensional simplified finite element method, and the reasons of this phenomenon were analyzed. The feasibility of seismic analysis on large-scale three-dimensional finite element model under existing hardware condition was demonstrated, so some technological reserves for dynamic analysis on complicated equipments or systems in nuclear engineering are provided.


2013 ◽  
Vol 788 ◽  
pp. 606-610
Author(s):  
Qing Xiang Ji ◽  
Xin Sheng Ge

Foundation pit excavation could be affected to some extent by surrounding different kinds of building materials, building structure, foundation form and load distribution, especially in intensive buildings. In this paper, based on the large-scale finite element software ANSYS, a three-dimensional finite element model is established to analyze the consequences of these complex and uncertain factors faced with by deep excavation projects and the conclusions of the excavation affected by different foundations form of adjacent buildings are arrived at.


2013 ◽  
Vol 671-674 ◽  
pp. 606-610
Author(s):  
Jin Peng Sun ◽  
Jin Feng Jiao

Because the coal mine derrick technology needs, to be in from the original winch system of backward 10m based on a new set of new ground winch system, resulting in the original derrick structure stress state change. By using SAP2000 finite element software, the establishment of three-dimensional finite element model, the dynamic characteristics and technological transformation and bar stress were analyzed, for the coal mine derrick technological transformation to provide certain reference.


2011 ◽  
Vol 337 ◽  
pp. 633-638 ◽  
Author(s):  
Jiang Wei Wu ◽  
Peng Wang

In port crane industry, the surface hardening technique is widely used in order to improve the strength of wheel. From the practical experience, when the high hardness hardened wheel is used, the danger of sudden break of the wheel is increased. How the hardness of the wheel effect the fatigue life of the wheel is not studied theoretically. In this paper, the contact stresses in wheel with different hardness have been analyzed by applying three-dimensional finite element model. Based on this model, the ANSYS10.0 finite element software is used. Three different plastic slopes are used to simulate three different hardness materials. Surface hardened wheel with three different hardness materials, and three different vertical loads are applied. The effect of hardness of a surface hardened wheel is discussed by comparing the contact stresses from the numerical results. The reason of the sudden failure of the high hardness hardened wheel is discussed, and some suggestions are given in choosing hardness of the hardened wheel.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Sign in / Sign up

Export Citation Format

Share Document