Finite Element Analysis of the Effect of Surface Hardening Depth in Port Crane Wheel

2011 ◽  
Vol 291-294 ◽  
pp. 3282-3286 ◽  
Author(s):  
Jiang Wei Wu ◽  
Peng Wang

In port crane industry, the surface hardening technique is widely used in order to improve the strength of wheel. But the hardening depth is chosen only by according to the experience, and the effect of different hardened depths is not studied theoretically. In this paper, the contact stresses in wheel with different hardening depth have been analyzed by applying three-dimensional finite element model. Based on this model, the ANSYS10.0 finite element software is used. The elastic wheel is used to verify the numerical results with the Hertz’s theory. Three different hardening depths, namely 10mm, 25mm and whole hardened wheel, under three different vertical loads were applied. The effect of hardening depth of a surface hardened wheel is discussed by comparing the contact stresses and contact areas from the numerical results.

2011 ◽  
Vol 337 ◽  
pp. 633-638 ◽  
Author(s):  
Jiang Wei Wu ◽  
Peng Wang

In port crane industry, the surface hardening technique is widely used in order to improve the strength of wheel. From the practical experience, when the high hardness hardened wheel is used, the danger of sudden break of the wheel is increased. How the hardness of the wheel effect the fatigue life of the wheel is not studied theoretically. In this paper, the contact stresses in wheel with different hardness have been analyzed by applying three-dimensional finite element model. Based on this model, the ANSYS10.0 finite element software is used. Three different plastic slopes are used to simulate three different hardness materials. Surface hardened wheel with three different hardness materials, and three different vertical loads are applied. The effect of hardness of a surface hardened wheel is discussed by comparing the contact stresses from the numerical results. The reason of the sudden failure of the high hardness hardened wheel is discussed, and some suggestions are given in choosing hardness of the hardened wheel.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhun Xu ◽  
Yikai Li ◽  
Shaoqun Zhang ◽  
Liqing Liao ◽  
Kai Wu ◽  
...  

Abstract Background Clinical studies have found that manipulations have a good clinical effect on sacroiliac joint (SIJ) pain without specific causes. However, the specific mechanisms underlying the effect of manipulations are still unclear. The purpose of this study was to investigate the effects of three common manipulations on the stresses and displacements of the normal SIJ and the strains of the surrounding ligaments. Methods A three-dimensional finite element model of the pelvis-femur was developed. The manipulations of hip and knee flexion (MHKF), oblique pulling (MOP), and lower limb hyperextension (MLLH) were simulated. The stresses and displacements of the SIJ and the strains of the surrounding ligaments were analyzed during the three manipulations. Results MOP produced the highest stress on the left SIJ, at 6.6 MPa, while MHKF produced the lowest stress on the right SIJ, at 1.5 MPa. The displacements of the SIJ were all less than 1 mm during the three manipulations. The three manipulations caused different degrees of ligament strain around the SIJ, and MOP produced the greatest straining of the ligaments. Conclusion The three manipulations all produced small displacements of the SIJ and different degrees of ligament strains, which might be the mechanism through which they relieve SIJ pain. MOP produced the largest displacement and the greatest ligament strains.


2013 ◽  
Vol 644 ◽  
pp. 358-361
Author(s):  
Dong Yu Ji

This paper adopts general finite element software to carry out three-dimensional finite element simulation analysis for Huizeli reinforced concrete rectangular-sectioned aqueduct. Considering four combination cases in aqueduct’s construction and operating process, researching variation laws of the aqueduct’s stress and displacement. Analysis results show that design scheme of Huizeli reinforced concrete rectangular-sectioned aqueduct is reasonable, it can meet design requirements. Analysis results provide some theory references for design of reinforced concrete rectangular-sectioned aqueduct.


Author(s):  
Naibin Jiang ◽  
Feng-gang Zang ◽  
Li-min Zhang ◽  
Chuan-yong Zhang

The seismic analysis on reactor structure was performed with a new generation of finite element software. The amount of freedom degree of the model was more than twenty millions. The typical responses to operational basis earthquake excitation were given. They are larger than those with two-dimensional simplified finite element method, and the reasons of this phenomenon were analyzed. The feasibility of seismic analysis on large-scale three-dimensional finite element model under existing hardware condition was demonstrated, so some technological reserves for dynamic analysis on complicated equipments or systems in nuclear engineering are provided.


2015 ◽  
Vol 52 (12) ◽  
pp. 2041-2054 ◽  
Author(s):  
R. Kerry Rowe ◽  
K.-W. Liu

The performance of four sections of a full-scale embankment constructed on soft soil is examined using a fully coupled and fully three-dimensional finite element analysis. The four sections had similar embankment loadings but different improvement options (one unimproved, one with pile-support only, one with a single layer geotextile-reinforced platform and pile-support, and one with two layers of geogrid-reinforced platform and pile-support). Like the field data, the numerical results show that the inclusion of piles decreases the settlement at the subsoil surface to 52% of that for the unimproved section, and the addition of a single layer of geotextile reinforcement (J = 800 kN/m) further reduced settlement to only 31% of that of the unimproved section. The effects of geosynthetic reinforcement and multiple layers of reinforcement on the performance of the pile-supported embankment are discussed. The relative load transfer is calculated using eight existing methods and they are compared with the field measurements and numerical results.


2011 ◽  
Vol 474-476 ◽  
pp. 807-810 ◽  
Author(s):  
Xiao Cong He

This paper deals with the effects of bending and boundary condition on the stress distribution of a single-lap adhesive joint under tension using the three-dimensional finite element analysis technique. The numerical results obtained from the finite element analysis show that both the left and right hand regions of the adhesive layer are subjected to high stresses. The numerical results also show that most of the extreme stresses occur at interface which is between the adhesive and the upper adherend. It is clear that the stresses are concentrated near the left and right free ends of the adhesive layer while the centre region of the adhesive layer is mostly stress-free. It is also clear that the stress state in this case is mainly dominated by the normal stress components.


Author(s):  
Sunil Kumar Sharma ◽  
Jaesun Lee

Railways are very efficient mode of transportation. Speed limits of the railways and loads they carry are increasing rapidly. Due to some advantages, the insulated rail joints are still the part of a rail-track system. However, a high rate of failure of joints puts the railway track at risk. Therefore, a detailed study of these joints is required. In this paper, a three-dimensional finite element model of rail-fishplate joint is created using Abaqus - a finite element method-based software. Stresses in fishplate and bolts due to wheel impact are analysed by coupling implicit and explicit methods. It is found that bolts are a critical part of a joint due to stresses and vibrations to which they are subjected. The large number of stresses and vibration can result into loosening of bolts.


Author(s):  
Cagri Mollamahmutoglu ◽  
Idris Bedirhanoglu

In this study, the performance of a damaged dam was evaluated through a three-dimensional finite element model. The dam is located in Derbendikhan city of Northern Iraq and damaged during a 7.3 magnitude earthquake which was happened 30 kilometers south of Halabja city. Derbendikhan dam which was built between the years 1956-1961 is a clay-core rock fill dam. The damage of the dam was investigated at the site right after the earthquake and some cracks were observed in the main body of the dam. The main goal of this work is to present the results of the survey which was conducted at the site and investigating the damage development mechanism through a realistic three-dimensional finite element model of the dam. As complying with the observations at the site, the finite element analysis has shown that the primary failure mechanism is due to the separation of the core and rock fill sections at the downstream side of the dam.


2011 ◽  
Vol 105-107 ◽  
pp. 2121-2124
Author(s):  
Jun Feng Pei ◽  
Sheng Ying Deng ◽  
Guang Min Chen ◽  
Jian Zhang

In recent years, the self-elevating derrick substructure which with the characteristics of easy to install、remove and transfer are gradually replacing layer box, box block substructure, etc. The three-dimensional finite element model of the MXD-701 jack-up derrick and substructure, which is used to analyze static properties of the petroleum substructure under the six different working loads are built by the ANSYS finite element software. Meanwhile, the wireless structural testing system(STS-WiFi)is testing at the MXD-701 petroleum substructure. Then comparing of the model results and testing results. Analysis results indicate that the stress of the substructure at the two beam table is greatest, the stress of the upper part of the guy column is much greater, and others are low, but in general, the overall substructure can fit the requirements of the strength and intensity. The compared results can accurately reflect the project structure of the stress and strain. Then, we can get the capacity of the substructure in order to provide evidence to the security situation of the substructure. It will have great significance to enrich and develop the mast base design and safety assessment theory.


Sign in / Sign up

Export Citation Format

Share Document