Experimental Study of Mine AE Signal Based on Wavelet Analysis

2011 ◽  
Vol 148-149 ◽  
pp. 1127-1130 ◽  
Author(s):  
Xiu Zhi Cheng ◽  
Zhen Yu ◽  
Guang Zhu

Because the wavelet transform can characterize the local signals in time and frequency domain, in the coal mine’s sound signals’ process, an audio signal processing based on wavelet analysis is proposed, the audio signal P wave is isolated and determined by wavelet transform, at the same time, the earthquake source can be located. Through the research of the mine AE signal’s activity patterns, the sound monitoring technology to forecast the mine power disaster is achieved.

2020 ◽  
pp. 175407392093454
Author(s):  
Pablo Arias ◽  
Laura Rachman ◽  
Marco Liuni ◽  
Jean-Julien Aucouturier

While acoustic analysis methods have become a commodity in voice emotion research, experiments that attempt not only to describe but to computationally manipulate expressive cues in emotional voice and speech have remained relatively rare. We give here a nontechnical overview of voice-transformation techniques from the audio signal-processing community that we believe are ripe for adoption in this context. We provide sound examples of what they can achieve, examples of experimental questions for which they can be used, and links to open-source implementations. We point at a number of methodological properties of these algorithms, such as being specific, parametric, exhaustive, and real-time, and describe the new possibilities that these open for the experimental study of the emotional voice.


2008 ◽  
Vol 2008 (1) ◽  
Author(s):  
Jonathan Taquet ◽  
Bernard Besserer ◽  
Abdelali Hassaine ◽  
Etienne Decenciere

2021 ◽  
Vol 2 ◽  
Author(s):  
Anderson Antonio Carvalho Alves ◽  
Lucas Tassoni Andrietta ◽  
Rafael Zinni Lopes ◽  
Fernando Oliveira Bussiman ◽  
Fabyano Fonseca e Silva ◽  
...  

This study focused on assessing the usefulness of using audio signal processing in the gaited horse industry. A total of 196 short-time audio files (4 s) were collected from video recordings of Brazilian gaited horses. These files were converted into waveform signals (196 samples by 80,000 columns) and divided into training (N = 164) and validation (N = 32) datasets. Twelve single-valued audio features were initially extracted to summarize the training data according to the gait patterns (Marcha Batida—MB and Marcha Picada—MP). After preliminary analyses, high-dimensional arrays of the Mel Frequency Cepstral Coefficients (MFCC), Onset Strength (OS), and Tempogram (TEMP) were extracted and used as input information in the classification algorithms. A principal component analysis (PCA) was performed using the 12 single-valued features set and each audio-feature dataset—AFD (MFCC, OS, and TEMP) for prior data visualization. Machine learning (random forest, RF; support vector machine, SVM) and deep learning (multilayer perceptron neural networks, MLP; convolution neural networks, CNN) algorithms were used to classify the gait types. A five-fold cross-validation scheme with 10 repetitions was employed for assessing the models' predictive performance. The classification performance across models and AFD was also validated with independent observations. The models and AFD were compared based on the classification accuracy (ACC), specificity (SPEC), sensitivity (SEN), and area under the curve (AUC). In the logistic regression analysis, five out of the 12 audio features extracted were significant (p < 0.05) between the gait types. ACC averages ranged from 0.806 to 0.932 for MFCC, from 0.758 to 0.948 for OS and, from 0.936 to 0.968 for TEMP. Overall, the TEMP dataset provided the best classification accuracies for all models. The most suitable method for audio-based horse gait pattern classification was CNN. Both cross and independent validation schemes confirmed that high values of ACC, SPEC, SEN, and AUC are expected for yet-to-be-observed labels, except for MFCC-based models, in which clear overfitting was observed. Using audio-generated data for describing gait phenotypes in Brazilian horses is a promising approach, as the two gait patterns were correctly distinguished. The highest classification performance was achieved by combining CNN and the rhythmic-descriptive AFD.


Sign in / Sign up

Export Citation Format

Share Document