Based on Genetic Algorithm Research of Stocker Picking Shortest Path

2012 ◽  
Vol 155-156 ◽  
pp. 186-190
Author(s):  
Fu Cai Wan ◽  
Duo Chen ◽  
Yong Qiang Wu

This paper analyzes characteristics of automated warehouse stocker picking operating process. Path optimization problem is considered as traveling salesman problem. The coordinates of picking points by calculating determine a stocker running route. The mathematical model of a path distance is built. And using the improved genetic algorithm solves the above problem. Finally, M-file program of stocker running path optimization is written and run in MATLAB. The simulation results that, in solving stocker path optimization problem, it can search for a shortest path by genetic algorithm. Thereby enhance the efficiency of automated warehouse system, increase greater benefits of the enterprise.

2014 ◽  
Vol 926-930 ◽  
pp. 3637-3640
Author(s):  
Li Feng ◽  
Qian Wu ◽  
Jing Shao Zhang

In this paper, we analyze the disadvantage of common generating test paper algorithm. An improved genetic algorithm (IGA) is proposed and used in auto-generating examination paper algorithm. We design the mathematical model of auto-generating test paper algorithm and improved the traditional GA fitness evaluation form. A computational study is carried out to verify the algorithm. Simulation results demonstrate that the performance of IGA can work efficiently than traditional ones.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yong Deng ◽  
Yang Liu ◽  
Deyun Zhou

A new initial population strategy has been developed to improve the genetic algorithm for solving the well-known combinatorial optimization problem, traveling salesman problem. Based on thek-means algorithm, we propose a strategy to restructure the traveling route by reconnecting each cluster. The clusters, which randomly disconnect a link to connect its neighbors, have been ranked in advance according to the distance among cluster centers, so that the initial population can be composed of the random traveling routes. This process isk-means initial population strategy. To test the performance of our strategy, a series of experiments on 14 different TSP examples selected from TSPLIB have been carried out. The results show that KIP can decrease best error value of random initial population strategy and greedy initial population strategy with the ratio of approximately between 29.15% and 37.87%, average error value between 25.16% and 34.39% in the same running time.


2014 ◽  
Vol 536-537 ◽  
pp. 845-848
Author(s):  
Tong Jie Zhang ◽  
Yan Cao ◽  
Xiang Wei Mu

An improved genetic algorithm for route optimization in DGT is proposed in this paper. In which, method of initial population, cross and mutation are improved to make it more suitable for DGT. It uses a dynamic operator to realize the adaptive adjustment of the parameters. The experimental results show that the improved algorithm overcomes the shortcomings of local optimum and "premature convergence" and improves the search efficiency and adaptability. The proposed algorithm can effectively solve the path optimization problem in DGT in time.


Author(s):  
Ge Weiqing ◽  
Cui Yanru

Background: In order to make up for the shortcomings of the traditional algorithm, Min-Min and Max-Min algorithm are combined on the basis of the traditional genetic algorithm. Methods: In this paper, a new cloud computing task scheduling algorithm is proposed, which introduces Min-Min and Max-Min algorithm to generate initialization population, and selects task completion time and load balancing as double fitness functions, which improves the quality of initialization population, algorithm search ability and convergence speed. Results: The simulation results show that the algorithm is superior to the traditional genetic algorithm and is an effective cloud computing task scheduling algorithm. Conclusion: Finally, this paper proposes the possibility of the fusion of the two quadratively improved algorithms and completes the preliminary fusion of the algorithm, but the simulation results of the new algorithm are not ideal and need to be further studied.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yongjin Liu ◽  
Xihong Chen ◽  
Yu Zhao

A prototype filter design for FBMC/OQAM systems is proposed in this study. The influence of both the channel estimation and the stop-band energy is taken into account in this method. An efficient preamble structure is proposed to improve the performance of channel estimation and save the frequency spectral efficiency. The reciprocal of the signal-to-interference plus noise ratio (RSINR) is derived to measure the influence of the prototype filter on channel estimation. After that, the process of prototype filter design is formulated as an optimization problem with constraint on the RSINR. To accelerate the convergence and obtain global optimal solution, an improved genetic algorithm is proposed. Especially, the History Network and pruning operator are adopted in this improved genetic algorithm. Simulation results demonstrate the validity and efficiency of the prototype filter designed in this study.


Sign in / Sign up

Export Citation Format

Share Document