Crack Width Calculation of Steel Reinforced Concrete Beams Considering the Bond-Slip

2012 ◽  
Vol 166-169 ◽  
pp. 1395-1398
Author(s):  
Cao Xiu Li ◽  
De Jian Shen ◽  
Pei Ling He ◽  
Xian Feng Dong ◽  
Hong Fei Zhang

Bond-slip performance between section steel and concrete has effect on crack width of steel reinforced concrete(SRC)beams based on experimental results. Current standards about SRC structures do not involve bond-slip effects when calculating the crack width of SRC beams, and this is not valid exactly . This article describes a new method of crack width calculation for SRC beams, which considering the bond-slip effects on crack width. Crack width of SRC beams are divided into two parts: one part ignoring the bond-slip between steel and concrete, and the other part considering additional crack width caused by the bond-slip. The total crack width is the sum of the two parts. Results show that the proposed method in this article is coincide with experimental study.

2012 ◽  
Vol 226-228 ◽  
pp. 1128-1131
Author(s):  
Xiu Li Cao ◽  
Gang Ye ◽  
Hai Gang Gou

Bond-slip performance between section steel and concrete has influence on deformation of steel reinforced concrete beams based on results of experimental studies. Current standards on steel reinforced concrete structures do not involve bond-slip effects when calculating the deflection of steel reinforced concrete beams and this is not valid exactly. This paper describes a new method of deflection calculation for steel reinforced concrete beams, which considering the bond-slip effects on deformation. Deflection of steel reinforced concrete beams are divided into two parts: deflection of steel reinforced concrete beams under loads considering the fully bond between steel and concrete, and the additional deflection caused by the bond-slip. The sum of the two parts is the total deflection. Results show that the proposed method in this paper fits with experimental results.


2017 ◽  
Vol 131 ◽  
pp. 231-242 ◽  
Author(s):  
C. Barris ◽  
L. Torres ◽  
I. Vilanova ◽  
C. Miàs ◽  
M. Llorens

Author(s):  
Elsayed Ismail ◽  
Mohamed S. Issa ◽  
Khaled Elbadry

Abstract Background A series of nonlinear finite element (FE) analyses was performed to evaluate the different design approaches available in the literature for design of reinforced concrete deep beam with large opening. Three finite element models were developed and analyzed using the computer software ATENA. The three FE models of the deep beams were made for details based on three different design approaches: (Kong, F.K. and Sharp, G.R., Magazine of Concrete Res_30:89-95, 1978), (Mansur, M. A., Design of reinforced concrete beams with web openings, 2006), and Strut and Tie method (STM) as per ACI 318-14 (ACI318 Committee, Building Code Requirements for Structural Concrete (ACI318-14), 2014). Results from the FE analyses were compared with the three approaches to evaluate the effect of different reinforcement details on the structural behavior of transfer deep beam with large opening. Results The service load deflection is the same for the three models. The stiffnesses of the designs of (Mansur, M. A., Design of reinforced concrete beams with web openings, 2006) and STM reduce at a load higher than the ultimate design load while the (Kong, F.K. and Sharp, G.R., Magazine of Concrete Res_30:89-95, 1978) reduces stiffness at a load close to the ultimate design load. The deep beam designed according to (Mansur, M. A., Design of reinforced concrete beams with web openings, 2006) model starts cracking at load higher than the beam designed according to (Kong, F.K. and Sharp, G.R., Magazine of Concrete Res_30:89-95, 1978) method. The deep beam detailed according to (Kong, F.K. and Sharp, G.R., Magazine of Concrete Res_30:89-95, 1978) and (Mansur, M. A., Design of reinforced concrete beams with web openings, 2006) failed due to extensive shear cracks. The specimen detailed according to STM restores its capacity after initial failure. The three models satisfy the deflection limit. Conclusion It is found that the three design approaches give sufficient ultimate load capacity. The amount of reinforcement given by both (Mansur, M. A., Design of reinforced concrete beams with web openings, 2006) and (Kong, F.K. and Sharp, G.R., Magazine of Concrete Res_30:89-95, 1978) is the same. The reinforcement used by the STM method is higher than the other two methods. Additional reinforcement is needed to limit the crack widths. (Mansur, M. A., Design of reinforced concrete beams with web openings, (2006)) method gives lesser steel reinforcement requirement and higher failure load compared to the other two methods.


Sign in / Sign up

Export Citation Format

Share Document