Adaptive Controller Design for a Class of Discrete Nonlinear Systems

2012 ◽  
Vol 182-183 ◽  
pp. 1260-1264
Author(s):  
Xiao Chun Lou

In this paper, we have discussed the adaptive controller problem for a class of nonlinear discrete systems. Firstly, the general nonlinear discrete-time system is transformed into a new form which is more suitable for adaptive controller design. Based on the new model, the observer is proposed to estimate the unavailable states. The adaptive controller is designed to track the desired trajectory.

Author(s):  
Triet Nguyen-Van ◽  
Noriyuki Hori

An innovative approach is proposed for generating discrete-time models of a class of continuous-time, nonautonomous, and nonlinear systems. By continualizing a given discrete-time system, sufficient conditions are presented for it to be an exact model of a continuous-time system for any sampling periods. This condition can be solved exactly for linear and certain nonlinear systems, in which case exact discrete-time models can be found. A new model is proposed by approximately solving this condition, which can always be found as long as a Jacobian matrix of the nonlinear system exists. As an example of the proposed method, a van der Pol oscillator driven by a forcing sinusoidal function is discretized and simulated under various conditions, which show that the proposed model tends to retain such key features as limit cycles and space-filling oscillations even for large sampling periods, and out-performs the forward difference model, which is a well-known, widely-used, and on-line computable model.


1988 ◽  
Author(s):  
Ioannis S. Apostolakis ◽  
John Diamessis ◽  
David Jordan

Sign in / Sign up

Export Citation Format

Share Document