Solving the Linear Time-Fractional Wave Equation by Generalized Differential Transform Method

2012 ◽  
Vol 204-208 ◽  
pp. 4476-4480 ◽  
Author(s):  
Xue Hui Chen ◽  
Liang Wei ◽  
Ji Zhe Sui ◽  
Lian Cun Zheng

In this paper, the generalized differential transform method is implemented for solving time-fractional wave equations in fluid mechanics. This method is based on the two-dimensional differential transform method (DTM) and generalized Taylor’s formula. The results reveal the method is feasible and convenient for handling approximate solutions of time-fractional partial differential equations.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Shaher Momani ◽  
Asad Freihat ◽  
Mohammed AL-Smadi

The multistep generalized differential transform method is applied to solve the fractional-order multiple chaotic FitzHugh-Nagumo (FHN) neurons model. The algorithm is illustrated by studying the dynamics of three coupled chaotic FHN neurons equations with different gap junctions under external electrical stimulation. The fractional derivatives are described in the Caputo sense. Furthermore, we present figurative comparisons between the proposed scheme and the classical fourth-order Runge-Kutta method to demonstrate the accuracy and applicability of this method. The graphical results reveal that only few terms are required to deduce the approximate solutions which are found to be accurate and efficient.


2011 ◽  
Vol 347-353 ◽  
pp. 463-466
Author(s):  
Xue Hui Chen ◽  
Liang Wei ◽  
Lian Cun Zheng ◽  
Xin Xin Zhang

The generalized differential transform method is implemented for solving time-fractional partial differential equations in fluid mechanics. This method is based on the two-dimensional differential transform method (DTM) and generalized Taylor’s formula. Results obtained by using the scheme presented here agree well with the numerical results presented elsewhere. The results reveal the method is feasible and convenient for handling approximate solutions of time-fractional partial differential equations.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Asad Freihat ◽  
Shaher Momani

A new reliable algorithm based on an adaptation of the standard generalized differential transform method (GDTM) is presented. The GDTM is treated as an algorithm in a sequence of intervals (i.e., time step) for finding accurate approximate solutions of fractional-order Rössler chaotic and hyperchaotic systems. A comparative study between the new algorithm and the classical Runge-Kutta method is presented in the case of integer-order derivatives. The algorithm described in this paper is expected to be further employed to solve similar nonlinear problems in fractional calculus.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 722 ◽  
Author(s):  
Rajarama Mohan Jena ◽  
Snehashish Chakraverty ◽  
Dumitru Baleanu

The primary objective of this manuscript is to obtain the approximate analytical solution of Camassa–Holm (CH), modified Camassa–Holm (mCH), and Degasperis–Procesi (DP) equations with time-fractional derivatives labeled in the Caputo sense with the help of an iterative approach called fractional reduced differential transform method (FRDTM). The main benefits of using this technique are that linearization is not required for this method and therefore it reduces complex numerical computations significantly compared to the other existing methods such as the perturbation technique, differential transform method (DTM), and Adomian decomposition method (ADM). Small size computations over other techniques are the main advantages of the proposed method. Obtained results are compared with the solutions carried out by other technique which demonstrates that the proposed method is easy to implement and takes small size computation compared to other numerical techniques while dealing with complex physical problems of fractional order arising in science and engineering.


Sign in / Sign up

Export Citation Format

Share Document