scholarly journals On New Solutions of Time-Fractional Wave Equations Arising in Shallow Water Wave Propagation

Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 722 ◽  
Author(s):  
Rajarama Mohan Jena ◽  
Snehashish Chakraverty ◽  
Dumitru Baleanu

The primary objective of this manuscript is to obtain the approximate analytical solution of Camassa–Holm (CH), modified Camassa–Holm (mCH), and Degasperis–Procesi (DP) equations with time-fractional derivatives labeled in the Caputo sense with the help of an iterative approach called fractional reduced differential transform method (FRDTM). The main benefits of using this technique are that linearization is not required for this method and therefore it reduces complex numerical computations significantly compared to the other existing methods such as the perturbation technique, differential transform method (DTM), and Adomian decomposition method (ADM). Small size computations over other techniques are the main advantages of the proposed method. Obtained results are compared with the solutions carried out by other technique which demonstrates that the proposed method is easy to implement and takes small size computation compared to other numerical techniques while dealing with complex physical problems of fractional order arising in science and engineering.

2012 ◽  
Vol 204-208 ◽  
pp. 4476-4480 ◽  
Author(s):  
Xue Hui Chen ◽  
Liang Wei ◽  
Ji Zhe Sui ◽  
Lian Cun Zheng

In this paper, the generalized differential transform method is implemented for solving time-fractional wave equations in fluid mechanics. This method is based on the two-dimensional differential transform method (DTM) and generalized Taylor’s formula. The results reveal the method is feasible and convenient for handling approximate solutions of time-fractional partial differential equations.


Author(s):  
Mohammad Reza Hajmohammadi ◽  
Seyed Salman Nourazar ◽  
Ali Habibi Manesh

A new algorithm is proposed based on semi-analytical methods to solve the conjugate heat transfer problems. In this respect, a problem of conjugate forced-convective flow over a heat-conducting plate is modeled and the integro-differential equation occurring in the problem is solved by two lately-proposed approaches, Adomian decomposition method and differential transform method. The solution of the governing integro-differential equation for temperature distribution of the plate is handled more easily and accurately by implementing Adomian decomposition method/differential transform method rather than other traditional methods such as perturbation method. A numerical approach is also performed via finite volume method to examine the validity of the results for temperature distribution of the plate obtained by Adomian decomposition method/differential transform method. It is shown that the expressions for the temperature distribution in the plate obtained from the two methods, Adomian decomposition method and differential transform method, are the same and show closer agreement to the results calculated from numerical work in comparison with the expression obtained by perturbation method existed in the literature.


2013 ◽  
Vol 284-287 ◽  
pp. 508-512
Author(s):  
Shih Hsiang Chang

This paper presents a numerical comparison between the differential transform method and the modified Adomian decomposition method for solving the boundary layer problems arising in hydrodynamics. The results show that the differential transform method and modified Adomian decomposition method are easier and more reliable to use in solving this type of problem and provides accurate data as compared with those obtained by other numerical methods.


Sign in / Sign up

Export Citation Format

Share Document