MEMS Gyro Random Drift Model Parameter Identification Based on Two-Stage Recursive Least Squares Method

2012 ◽  
Vol 220-223 ◽  
pp. 1044-1047 ◽  
Author(s):  
Zhao Hua Liu ◽  
Jia Bin Chen ◽  
Yu Liang Mao ◽  
Chun Lei Song

Autoregressive moving average model (ARMA) was usually used for gyro random drift modeling. Because gyro random drift was a non-stationary, weak non-linear and time-variant random signal, model parameters were random and time-variant, too. For improving precision of gyro and reducing effects of random drift, this paper adopted two-stage recursive least squares method for ARMA parameter estimation. This method overcame the shortcomings of the conventional recursive extended least squares (RELS) algorithm. At the same time, the forgetting factor was introduced to adapt the model parameters change. The simulation experimental results showed that this method is effective.

2015 ◽  
Vol 2015 ◽  
pp. 1-13
Author(s):  
Jinliang Zhang ◽  
Longyun Kang ◽  
Lingyu Chen ◽  
Zhihui Xu

This paper presents a two-stage recursive least squares (TSRLS) algorithm for the electric parameter estimation of the induction machine (IM) at standstill. The basic idea of this novel algorithm is to decouple an identifying system into two subsystems by using decomposition technique and identify the parameters of each subsystem, respectively. The TSRLS is an effective implementation of the recursive least squares (RLS). Compared with the conventional (RLS) algorithm, the TSRLS reduces the number of arithmetic operations. Experimental results verify the effectiveness of the proposed TSRLS algorithm for parameter estimation of IMs.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Xianling Lu ◽  
Wei Zhou ◽  
Wenlin Shi

This paper studies identification problems of two-input single-output controlled autoregressive moving average systems by using an estimated noise transfer function to filter the input-output data. Through data filtering, we obtain two simple identification models, one containing the parameters of the system model and the other containing the parameters of the noise model. Furthermore, we deduce a data filtering based recursive least squares method for estimating the parameters of these two identification models, respectively, by replacing the unmeasurable variables in the information vectors with their estimates. The proposed algorithm has high computational efficiency because the dimensions of its covariance matrices become small. The simulation results indicate that the proposed algorithm is effective.


2021 ◽  
pp. 107754632110191
Author(s):  
Fereidoun Amini ◽  
Elham Aghabarari

An online parameter estimation is important along with the adaptive control, that is, a time-dependent plant. This study uses both online identification and the simple adaptive control algorithm with velocity feedback. The recursive least squares method was used to identify the stiffness and damping parameters of the structure’s stories. Identification was carried out online without initial estimation and only by measuring the structural responses. The limited information regarding sensor measurements, parameter convergence, and the effects of the covariance matrix is examined. The integration of the applied online identification, the appropriate reference model selection in simple adaptive control, and adopting the proportional integral filter was used to limit the structural control response error. Some numerical examples are simulated to verify the ability of the proposed approach. Despite the limited information, the results show that the simultaneous use of online identification with the recursive least squares method and simple adaptive control algorithm improved the overall structural performance.


Sign in / Sign up

Export Citation Format

Share Document