The Finite Element Study of the Compressive Strength of Typical Waveform Corrugated Box

2012 ◽  
Vol 262 ◽  
pp. 390-394 ◽  
Author(s):  
Wei Yuan ◽  
Wen Cai Xu ◽  
Gai Mei Zhang ◽  
Li Hua Xie

The finite element model of a 0201 V-shaped, U-shaped, and UV-shaped single corrugated board corrugated boxes are established. The stress distribution and strain of the three types of waveform corrugated box to withstand the pressure of the top surface stacking are calculated. Three kinds of corrugated board compression are analyzed. Analysis of the structure shows that the V-shaped corrugated board has good rigidity, U-type corrugated box has good cushioning properties, and the range during which the UV type is a better choice. This is consistent with the experimental results, prove the validity of the finite element analysis, and provide data basis for optimization design of the shape of the corrugated board corrugated waveform.

2011 ◽  
Vol 117-119 ◽  
pp. 1535-1542 ◽  
Author(s):  
Hua Wei Zhang ◽  
Wei Xia ◽  
Zhi Heng Wu

In this paper, the clamping unit of a two-platen injection molding machine was modeled by Pro/ENGINEER, and was imported to Altair HyperWorks. In HyperMesh module, the finite element model was set up, ANSYS has been used in the finite element analysis of the clamping unit and the deformation and stress results were obtained. Based on the topology optimization of HyperWorks/OptiStruct, recommendations to improve the structure of the clamping mechanism are presented; the results showed that less material was used while its performance was maintained.


2011 ◽  
Vol 368-373 ◽  
pp. 1125-1129
Author(s):  
Chang Jiang Liu ◽  
Jin Long Wang

The finite element model about greenhouse canopy of seismic analysis was setted up, The finite element analysis software ANSYS was used to study structure displacement, stress analysis on greenhouse shed. The results showed that the dangerous part of the canopy were located on upper chord members,lower chord members, web members of the framework and the lower and upper, the inside of both sides of the wall with seismic load.Corresponding to this results ,the main destroied form were the framework damage caused by the bending deformation of upper chord members, lower chord members and the upper web members and the unstability caused by the distortion of both sides of the wall.


2016 ◽  
Vol 16 (08) ◽  
pp. 1550049 ◽  
Author(s):  
Fatih Altunel ◽  
Mehmet Çelik ◽  
Mehmet Çalişkan

This study proposes a new correlation improvement technique for the optimum node removal location to get improved modal assurance criterion (MAC) matrix. The technique is applied to updating of the finite element model (FEM) of a structure. The developed routine is tried on a utility helicopter. It is proven that it is capable of showing better performance than the coordinate MAC (coMAC), commonly used in such analyses. Commercial software is utilized for the finite element analysis of the helicopter fuselage and tail. Experimental modal analyses are also performed for updating the model for tail of the helicopter to demonstrate the effectiveness of the new technique.


2011 ◽  
Vol 411 ◽  
pp. 54-58
Author(s):  
Tao Feng ◽  
Xiao Li Jin

Based on the analytical theories of the joint surface, finite element modeling method of two kinds of joint about rails and bolts were studied. The finite element model of the engraving machine is built and its static and dynamic characterization is analyzed by the universal ANSYS. By this way, unreasonable structural design of engraving machine can be conducted, which will provide support for the optimization design of the structure. The correctness of the modeling method of joint surface is confirmed.


2010 ◽  
Vol 171-172 ◽  
pp. 778-782
Author(s):  
Wei Chun Zhang ◽  
Jie Chen ◽  
Bao Hao Pei ◽  
Bing Bing Ma ◽  
Peng Yu ◽  
...  

The weight control agency of crawler crane machine may be in the problem of inadequate strength in engineering applications. It will be analyzed and improved design by finite element. The bracket and frame are respectively calculated by static, established the finite element model, imposed loads, solved the result and sum up the stress distribution disciplinarian. The improved agencies are re-analyzed by the ANSYS. After re-analyzed, the intension of the weight control agency meets the strength requirement.


2011 ◽  
Vol 121-126 ◽  
pp. 2532-2536
Author(s):  
Jia Hong Zheng ◽  
Min Li

The model of the spindle was made while the related characteristics and parameters were analysising,and then it was inducted in ANSYS finite element analysis software. Through carrying the constraint on the finite element model, the spindle was completed to realize the finite element analysis. At last, the model was inducted in MATLAB to establish the optimal model, through the mathematical model ,it was realised to complete optimization analysis.


2013 ◽  
Vol 753-755 ◽  
pp. 1196-1200
Author(s):  
Lu Yu Huang ◽  
Yang Gao ◽  
Xia Cao

Based on the construction features of the steel structures of a type of electrical dust precipitator, a finite element model is established with large-scale finite element analysis software ANSYS, and the structure stress and displacement of the model under all sorts of loads are analyzed with the frontal solution method. The results indicate that analysis is relatively accurate, the finite element model and the analysis method is appropriate. The result can be further used for optimization design of the electrical precipitator steel structures.


2012 ◽  
Vol 424-425 ◽  
pp. 90-93
Author(s):  
Wei Chun Zhang ◽  
Xian Bin Du ◽  
Bing Bing Ma ◽  
Bao Hao Pei ◽  
Jie Chen ◽  
...  

Create the finite element model of the frame in ANSYS, and then apply the corresponding boundary conditions and loads for static analysis under the two typical operating conditions of the bending and twisting. And then identify the part suffered a relatively bigger stress in the frame by analyzing the results to verify whether it meets the requirements of its strength. Finally, make a preliminary topology optimization for the frame


Author(s):  
Reza Behrou ◽  
Reza Lotfi ◽  
Josephine V. Carstensen ◽  
James K. Guest

Abstract This paper presents an adaptive nodal boundary condition scheme to systematically enhance the computational efficiency and circumvent numerical instabilities of the finite element analysis in density-based topology optimization problems. The approach revisits the idea originally proposed by Bruns and Tortorelli to eliminate the contribution of void elements from the finite element model and extends this idea to modern projection methods to stabilize the implementation, facilitate reintroduction of material, and consider additional physics. The computational domain is discretized on a fixed finite element mesh and a threshold density is used to determine if an element is sufficiently low relative density to be “removed” from the finite element analysis. By eliminating low-density elements from the design domain, the number of free Degrees-Of-Freedom (DOFs) is reduced, thereby reducing the solution cost of the finite element equations. Perhaps more importantly, it circumvents numerical instabilities such as element distortion when considering large deformations. Unlike traditional solids-only modeling approaches, a key feature of the projection-based scheme is that the design and finite element spaces are separate, allowing the design variable sensitivities in a region to remain active (and potentially non-zero) even if the corresponding analysis elements are removed from the finite element model. This ultimately means material reintroduction is systematic and driven by the design sensitivities. The Solid Isotropic Material with Penalization (SIMP) approach is used to interpolate material properties and the Heaviside Projection Method (HPM) is used to regularize the optimization problem and facilitate material reintroduction through the gradient-based optimizer. Several benchmark examples in areas of linear and nonlinear structural mechanics are presented to demonstrate the performance of the proposed approach. The resulting optimized designs are consistent with literature and results reveal the performance and efficiency of the developed method in reducing computational costs without numerical instabilities known to be due to modeling near-void elements.


2012 ◽  
Vol 150 ◽  
pp. 165-169 ◽  
Author(s):  
Gang Zhang ◽  
Xue Zhang ◽  
De De Jiang ◽  
Ming Yan Li ◽  
Jian Zhang

According to the property of contact problem, the calculation formula of contact stress of cross-roller slewing bearing is derived under the action of eccentric axial load. The finite element model of slewing bearing is analyzed in ANSYS, and then the finite element analysis software is used to analyze the contact stress. In this way, the distribution condition of contact stress between roller and rings is obtained. By comparing the finite element analysis results with theoretical analysis results, the correctness of finite element analysis is certified, which provides a guide for the design and optimization of slewing bearing.


Sign in / Sign up

Export Citation Format

Share Document