An Adaptive and Efficient Boundary Approach for Density-Based Topology Optimization

Author(s):  
Reza Behrou ◽  
Reza Lotfi ◽  
Josephine V. Carstensen ◽  
James K. Guest

Abstract This paper presents an adaptive nodal boundary condition scheme to systematically enhance the computational efficiency and circumvent numerical instabilities of the finite element analysis in density-based topology optimization problems. The approach revisits the idea originally proposed by Bruns and Tortorelli to eliminate the contribution of void elements from the finite element model and extends this idea to modern projection methods to stabilize the implementation, facilitate reintroduction of material, and consider additional physics. The computational domain is discretized on a fixed finite element mesh and a threshold density is used to determine if an element is sufficiently low relative density to be “removed” from the finite element analysis. By eliminating low-density elements from the design domain, the number of free Degrees-Of-Freedom (DOFs) is reduced, thereby reducing the solution cost of the finite element equations. Perhaps more importantly, it circumvents numerical instabilities such as element distortion when considering large deformations. Unlike traditional solids-only modeling approaches, a key feature of the projection-based scheme is that the design and finite element spaces are separate, allowing the design variable sensitivities in a region to remain active (and potentially non-zero) even if the corresponding analysis elements are removed from the finite element model. This ultimately means material reintroduction is systematic and driven by the design sensitivities. The Solid Isotropic Material with Penalization (SIMP) approach is used to interpolate material properties and the Heaviside Projection Method (HPM) is used to regularize the optimization problem and facilitate material reintroduction through the gradient-based optimizer. Several benchmark examples in areas of linear and nonlinear structural mechanics are presented to demonstrate the performance of the proposed approach. The resulting optimized designs are consistent with literature and results reveal the performance and efficiency of the developed method in reducing computational costs without numerical instabilities known to be due to modeling near-void elements.

2011 ◽  
Vol 117-119 ◽  
pp. 1535-1542 ◽  
Author(s):  
Hua Wei Zhang ◽  
Wei Xia ◽  
Zhi Heng Wu

In this paper, the clamping unit of a two-platen injection molding machine was modeled by Pro/ENGINEER, and was imported to Altair HyperWorks. In HyperMesh module, the finite element model was set up, ANSYS has been used in the finite element analysis of the clamping unit and the deformation and stress results were obtained. Based on the topology optimization of HyperWorks/OptiStruct, recommendations to improve the structure of the clamping mechanism are presented; the results showed that less material was used while its performance was maintained.


2012 ◽  
Vol 424-425 ◽  
pp. 90-93
Author(s):  
Wei Chun Zhang ◽  
Xian Bin Du ◽  
Bing Bing Ma ◽  
Bao Hao Pei ◽  
Jie Chen ◽  
...  

Create the finite element model of the frame in ANSYS, and then apply the corresponding boundary conditions and loads for static analysis under the two typical operating conditions of the bending and twisting. And then identify the part suffered a relatively bigger stress in the frame by analyzing the results to verify whether it meets the requirements of its strength. Finally, make a preliminary topology optimization for the frame


2014 ◽  
Vol 945-949 ◽  
pp. 1143-1149
Author(s):  
Hai Xia Sun ◽  
Hua Kai Wei ◽  
Xiao Fang Zhao ◽  
Jia Rui Qi

The finite element model of the concrete mixing truck’s frame is builded by using shell as basic element, and the process of building the finite element model of the balance suspension is introduced in detail. Based on this, frame’s stress on five types of typical operating conditions are calculated by using the finite element analysis software, NASTRAN, and results can show the dangerous position and the maximum stress position on the frame. The analysis result on structural strength can provide the basis for further improving the frame structure.


2014 ◽  
Vol 680 ◽  
pp. 249-253
Author(s):  
Zhang Qi Wang ◽  
Jun Li ◽  
Wen Gang Yang ◽  
Yong Feng Cheng

Strain clamp is an important connection device in guy tower. If the quality of the compression splicing position is unsatisfied, strain clamp tends to be damaged which may lead to the final collapse of a guy tower as well as huge economic lost. In this paper, stress distribution on the compressible tube and guy cable is analyzed by FEM, and a large equivalent stress of guy cable is applied to the compression splicing position. During this process, a finite element model of strain clamp is established for guy cables at compression splicing position, problems of elastic-plastic and contracting are studied and the whole compressing process of compressible position is simulated. The guy cable cracks easily at the position of compressible tube’s port, the inner part of the compressible tube has a larger equivalent stress than outside.


2011 ◽  
Vol 368-373 ◽  
pp. 1125-1129
Author(s):  
Chang Jiang Liu ◽  
Jin Long Wang

The finite element model about greenhouse canopy of seismic analysis was setted up, The finite element analysis software ANSYS was used to study structure displacement, stress analysis on greenhouse shed. The results showed that the dangerous part of the canopy were located on upper chord members,lower chord members, web members of the framework and the lower and upper, the inside of both sides of the wall with seismic load.Corresponding to this results ,the main destroied form were the framework damage caused by the bending deformation of upper chord members, lower chord members and the upper web members and the unstability caused by the distortion of both sides of the wall.


2011 ◽  
Vol 201-203 ◽  
pp. 253-256 ◽  
Author(s):  
Zhi Peng Lv ◽  
Si Zhu Zhou ◽  
Xiu Hua Ma

According to the plunger pump movement principle, this paper analyzed the two kind of typical force situation of the crosshead, and obtained the theoretical maximum force. Established the finite element model of the crosshead, gave an analysis to the load handling and boundary condition. The last results of the node stress and displacement show that the crosshead can work safely.


2016 ◽  
Vol 16 (08) ◽  
pp. 1550049 ◽  
Author(s):  
Fatih Altunel ◽  
Mehmet Çelik ◽  
Mehmet Çalişkan

This study proposes a new correlation improvement technique for the optimum node removal location to get improved modal assurance criterion (MAC) matrix. The technique is applied to updating of the finite element model (FEM) of a structure. The developed routine is tried on a utility helicopter. It is proven that it is capable of showing better performance than the coordinate MAC (coMAC), commonly used in such analyses. Commercial software is utilized for the finite element analysis of the helicopter fuselage and tail. Experimental modal analyses are also performed for updating the model for tail of the helicopter to demonstrate the effectiveness of the new technique.


2013 ◽  
Vol 694-697 ◽  
pp. 194-197
Author(s):  
Li Juan Yu ◽  
Chang Ju Xu ◽  
Xue Cheng Zhang

In the test enginery, using reverse frame put the pulling force into the pressure is the most commonly structure method. This paper analyzed the buckling problem of the process of reverse frame working, established the finite element model , stability analyzed , putted forward and proved the critical condition of reverse frame in the course of stability, Verified in 10kN deadweight force standard machine.


Author(s):  
A. Bahtui ◽  
H. Bahai ◽  
G. Alfano

This paper presents a detailed finite element analysis of a five-layer unbonded flexible riser. The numerical results are compared analytical solutions for various load cases. In the finite element model all layers are modelled separately with contact interfaces placed between each layer. The finite element model includes the main features of the riser geometry with very little simplifying assumptions made. The numerical model was solved using a fully explicit time-integration scheme implemented in a parallel environment on a 16-processor cluster. The very good agreement found from numerical and analytical comparisons validates the use of our numerical model to provide benchmark solutions against which further detailed investigation will be made.


2010 ◽  
Vol 171-172 ◽  
pp. 778-782
Author(s):  
Wei Chun Zhang ◽  
Jie Chen ◽  
Bao Hao Pei ◽  
Bing Bing Ma ◽  
Peng Yu ◽  
...  

The weight control agency of crawler crane machine may be in the problem of inadequate strength in engineering applications. It will be analyzed and improved design by finite element. The bracket and frame are respectively calculated by static, established the finite element model, imposed loads, solved the result and sum up the stress distribution disciplinarian. The improved agencies are re-analyzed by the ANSYS. After re-analyzed, the intension of the weight control agency meets the strength requirement.


Sign in / Sign up

Export Citation Format

Share Document