Augmented Reality-Based Embedded Sensor Location Recognition and Data Visualization Technique for Concrete Structural Health Monitoring

2013 ◽  
Vol 281 ◽  
pp. 593-596
Author(s):  
Woong Ki Park ◽  
Hyun Uk Kim ◽  
Chang Gil Lee ◽  
Seung Hee Park

In recent years, numerous mega-sized and complex civil infrastructures are being constructed all over the world. Therefore, more precise construction and maintenance technologies are required for these complicated construction projects. So a variety of sensors-based structural health monitoring (SHM) techniques have been studied, but these techniques could not manage the sensors efficiently access the database obtained from the sensors. Recently, Quick response (QR) code and AR-based data access technologies have been developed. In this paper, an AR-based concrete curing strength monitoring technique for sensor management and efficient access of the measured data is introduced. It is confirmed that the AR-based concrete curing strength monitoring technique is useful for construction process. In addition, it is concluded that both efficient sensor location recognition and data visualization at anytime, anywhere, and any smart PC devices are promising.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Shao-Fei Jiang ◽  
Si-Yao Wu ◽  
Li-Qiang Dong

Optimization techniques have been applied to structural health monitoring and damage detection of civil infrastructures for two decades. The standard particle swarm optimization (PSO) is easy to fall into the local optimum and such deficiency also exists in the multiparticle swarm coevolution optimization (MPSCO). This paper presents an improved MPSCO algorithm (IMPSCO) firstly and then integrates it with Newmark’s algorithm to localize and quantify the structural damage by using the damage threshold proposed. To validate the proposed method, a numerical simulation and an experimental study of a seven-story steel frame were employed finally, and a comparison was made between the proposed method and the genetic algorithm (GA). The results show threefold: (1) the proposed method not only is capable of localization and quantification of damage, but also has good noise-tolerance; (2) the damage location can be accurately detected using the damage threshold proposed in this paper; and (3) compared with the GA, the IMPSCO algorithm is more efficient and accurate for damage detection problems in general. This implies that the proposed method is applicable and effective in the community of damage detection and structural health monitoring.


Author(s):  
Kyle Bassett ◽  
Rupp Carriveau ◽  
David S.-K. Ting

Structural health monitoring is a technique devised to monitor the structural conditions of a system in an attempt to take corrective measures before the system fails. A passive structural health monitoring technique is presented, which serves to leverage historic time series data in order to both detect and localize damage on a wind turbine blade aerodynamic model. First, vibration signals from the healthy system are recorded for various input conditions. The data is normalized and auto-regressive (AR) coefficients are determined in order to uniquely identify the normal behavior of the system for each input condition. This data is then stored in a healthy state database. When the structural condition of the system is unknown the vibration signals are acquired, normalized and identified by their AR coefficients. Damage is detected through the residual error which is calculated as the difference between the AR coefficients of the unknown and healthy structural conditions. This technique is tailored for wind turbines and the application of this approach is demonstrated in a wind tunnel using a small turbine blade held with four springs to create a dual degree-of-freedom system. The vibration signals from this system are characterized by free-stream speed. Damage is replicated through mass addition on each of the blades ends and is located by an increase in residual error from the accelerometer mounted closest to the damaged area. The outlined procedure and demonstration illustrate a single stage structural health monitoring technique that, when applied on a large scale, can avoid catastrophic turbine disasters and work to effectively reduce the maintenance costs and downtime of wind farm operations.


Sign in / Sign up

Export Citation Format

Share Document