Experimental Study on Catalytic Pyrolysis of Biomass Pellet

2013 ◽  
Vol 291-294 ◽  
pp. 320-323 ◽  
Author(s):  
Ai Jun Xue ◽  
Ji Hong Pan ◽  
Mao Cheng Tian

In the present study, catalytic pyrolysis characteristics of corn straw pellet were studied in biomass pyrolysis test bench. The effect of content of CaO added in biomass pellet on pyrolysis products was investigated. The results showed that: with the increase of CaO content, the yield of tar decreased ,and the yield of char and gas increased. Among gas compositions, the volume percentage of CO、H2、CH4 increased, while the volume percentage of CO2 decrease greatly. The Calorific values of the gas increase distinctly. The results have significant theoretical guidance on the application of biomass pellets in biomass gasification equipments.

2013 ◽  
Vol 641-642 ◽  
pp. 756-759
Author(s):  
Ai Jun Xue ◽  
Ji Hong Pan ◽  
Mao Cheng Tian

In the present study, pyrolysis characteristics of corn straw pellet were studied in biomass pyrolysis test bench. The influence of pellet diameter on pyrolysis products was investigated. The results showed that: with the increase of pellet diameter, the yield of tar decreased ,and the yield of char and gas increased, and char density increased too. The results has significant theoretical guidance on the biomass gasification and preparation of char using biomass pellets.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhiyue Zhao ◽  
Zhiwei Jiang ◽  
Hong Xu ◽  
Kai Yan

We report a sustainable strategy to cleanly address biomass waste with high-value utilization. Phenol-rich bio-oil is selectively produced by direct pyrolysis of biomass waste corn straw (CS) without use of any catalyst in a microwave device. The effects of temperature and power on the yield and composition of pyrolysis products are investigated in detail. Under microwave irradiation, a very fast pyrolysis rate and bio-oil yield as high as 46.7 wt.% were obtained, which were competitive with most of the previous results. GC-MS analysis showed that temperature and power (heating rate) had great influences on the yield of bio-oil and the selectivity of phenolic compounds. The optimal selectivity of phenols in bio-oil was 49.4 area% by adjusting the operating parameters. Besides, we have made detailed statistics on the change trend of some components and different phenols in bio-oil and given the law and reason of their change with temperature and power. The in situ formed highly active biochar from CS with high content of potassium (1.34 wt.%) is responsible for the improvement of phenol-rich oils. This study offers a sustainable way to fully utilize biomass waste and promote the achievement of carbon neutrality.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Sensho Honma ◽  
Toshimitsu Hata ◽  
Takashi Watanabe

The influence of catalysts on the compositions of char and pyrolysis oil obtained by pyrolysis of wood biomass with pulse current heating was studied. The effects of catalysts on product compositions were analyzed using GC-MS and TEM. The compositions of some aromatic compounds changed noticeably when using a metal oxide species as the catalyst. The coexistence or dissolution of amorphous carbon and iron oxide was observed in char pyrolyzed at 800°C with Fe3O4. Pyrolysis oil compositions changed remarkably when formed in the presence of a catalyst compared to that obtained from the uncatalyzed pyrolysis of wood meal. We observed a tendency toward an increase in the ratio of polyaromatic hydrocarbons in the pyrolysis oil composition after catalytic pyrolysis at 800°C. Pyrolysis of biomass using pulse current heating and an adequate amount of catalyst is expected to yield a higher content of specific polyaromatic compounds.


BioResources ◽  
2015 ◽  
Vol 10 (3) ◽  
Author(s):  
Ze Wang ◽  
Siwei Liu ◽  
Weigang Lin ◽  
Wenli Song

Fuel ◽  
2020 ◽  
Vol 279 ◽  
pp. 118500 ◽  
Author(s):  
Qiuxiang Lu ◽  
Shenfu Yuan ◽  
Chunxiang Liu ◽  
Tao Zhang ◽  
Xiaoguang Xie ◽  
...  

2007 ◽  
Vol 85 (5) ◽  
pp. 473-480 ◽  
Author(s):  
A. Aho ◽  
N. Kumar ◽  
K. Eränen ◽  
T. Salmi ◽  
M. Hupa ◽  
...  

2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Eliseu Monteiro ◽  
Abel Rouboa

In the currently reported work, three typical mixtures of H2, CO, CH4, CO2, and N2 have been considered as representative of the producer gas (syngas) coming from biomass gasification. Syngas is being recognized as a viable energy source worldwide, particularly for stationary power generation. However, there are gaps in the fundamental understand of syngas combustion characteristics, especially at elevated pressures that are relevant to practical combustors. In this work, constant volume spherical expanding flames of three typical syngas compositions resulting from biomass gasification have been employed to measure the laminar burning velocities for pressures ranges between 1.0 and 20 bar tanking into account the stretch effect on burning velocity. Over the ranges studied, the burning velocities are fit by a functional form Su=Su0(T/T0)α(P/P0)β; and the dependencies of α and β upon the equivalence ratio of mixture are also given. Conclusion can be drawn that the burning velocity decreases with the increase of pressure. In opposite, an increase in temperature induces an increase of the burning velocity. The higher burning velocity value is obtained for downdraft syngas. This result is endorsed to the higher heat value, lower dilution and higher volume percentage of hydrogen in the downdraft syngas.


2012 ◽  
Vol 26 (8) ◽  
pp. 5300-5306 ◽  
Author(s):  
Suchithra Thangalazhy-Gopakumar ◽  
Sushil Adhikari ◽  
Ram B. Gupta

Sign in / Sign up

Export Citation Format

Share Document