polyaromatic hydrocarbons
Recently Published Documents


TOTAL DOCUMENTS

789
(FIVE YEARS 177)

H-INDEX

51
(FIVE YEARS 8)

2021 ◽  
Vol 22 (24) ◽  
pp. 13453
Author(s):  
Bożena Bukowska ◽  
Paulina Sicińska

Epigenetic changes constitute one of the processes that is involved in the mechanisms of carcinogenicity. They include dysregulation of DNA methylation processes, disruption of post-translational patterns of histone modifications, and changes in the composition and/or organization of chromatin. Benzo(a)pyrene (BaP) influences DNA methylation and, depending on its concentrations, as well as the type of cell, tissue and organism it causes hypomethylation or hypermethylation. Moreover, the exposure to polyaromatic hydrocarbons (PAHs), including BaP in tobacco smoke results in an altered methylation status of the offsprings. Researches have indicated a potential relationship between toxicity of BaP and deregulation of the biotin homeostasis pathway that plays an important role in the process of carcinogenesis. Animal studies have shown that parental-induced BaP toxicity can be passed on to the F1 generation as studied on marine medaka (Oryzias melastigma), and the underlying mechanism is likely related to a disturbance in the circadian rhythm. In addition, ancestral exposure of fish to BaP may cause intergenerational osteotoxicity in non-exposed F3 offsprings. Epidemiological studies of lung cancer have indicated that exposure to BaP is associated with changes in methylation levels at 15 CpG; therefore, changes in DNA methylation may be considered as potential mediators of BaP-induced lung cancer. The mechanism of epigenetic changes induced by BaP are mainly due to the formation of CpG-BPDE adducts, between metabolite of BaP—BPDE and CpG, which leads to changes in the level of 5-methylcytosine. BaP also acts through inhibition of DNA methyltransferases activity, as well as by increasing histone deacetylases HDACs, i.e., HDAC2 and HDAC3 activity. The aim of this review is to discuss the mechanism of the epigenetic action of BaP on the basis of the latest publications.


INEOS OPEN ◽  
2021 ◽  
Vol 4 ◽  
Author(s):  
M. A. Arsenov ◽  
◽  
D. A. Loginov ◽  

The discovery of transition metal-catalyzed selective activation of aromatic carbon–hydrogen bonds in 1993 has opened a new era in the synthesis of carbo- and heterocyclic compounds. This review covers the applications of oxidative annulations of aromatic compounds with alkynes involving CH activation for the synthesis of isocoumarins and polyaromatic hydrocarbons (PAHs). The limitations, advantages, and mechanical aspects of this approach as well as the current tendencies in the application of the reaction products for photoactive materials are discussed.


Author(s):  
Heba Mohamed Adly ◽  
Saleh Ahmed K. Saleh

Background: The effect of polyaromatic hydrocarbons (PAHs) on human health differs depending on the duration and exposure path. Objective: This study aimed to examine the effects of PAHs on the human health risks associated with long-term exposure both before and throughout the COVID-19 pandemic. Methodology: PM10 sampling for 24 h was conducted at six sampling sites (Al-Haram, Aziziyah, Al Nuzhah, Muzdalifah, Arafat, and Al Awali). On-site measurements were conducted from March 2020 to February 2021. PAHs were analyzed using Perkin Elmer GC/MS, which was adjusted with standard reagents for identifying 16 PAH mixtures. Results: The 24 h average PM10 concentration showed considerable inconsistencies, exceeding the WHO standards used for median exposure (25.0 µgm−3). The PAH intensities fluctuated from 7.67 to 34.7 ng/m3 in a suburban area, near a rush-hour traffic road, and from 6.34 to 37.4 ng/m3 close to business and light manufacturing areas. The highest carcinogenic compound levels were found in the Al-Azizia, Al Muzdalifah, and Al Nuzah areas because of the high traffic density, and the lowest concentrations were found in the Al-Haram and Arafat areas throughout the year, as a result of the COVID-19 pandemic health precautions that were undertaken by the government of Saudi Arabia involving border entry limits and limitations of the Umrah and Hajj seasons. Conclusion: This study period is considered extraordinary as the Saudi Arabian government has undertaken successful preventive measures that have had a great effect both on the spread of the pandemic and in reducing air pollution in Makkah. More studies are required to examine PAHs’ carcinogenic effects after the pandemic measures are eased across Makkah.


2021 ◽  
Vol 948 (1) ◽  
pp. 012026
Author(s):  
A A Ghozali ◽  
D Iswantini ◽  
C Kusmana ◽  
N Nurhidayat

Abstract Five polyaromatic hydrocarbons (PAHs) degrading bacterial species had been isolated from crude oil samples. All bacteria were positive Gram-stained, except one; and had positive results on the catalase test. After sequencing bacterial DNA, three bacterial genera were obtained with 99-100% certainty, namely: Pseudomonas sp., Staphylococcus sp., and Bacillus sp. All bacteria were known strongly to form a biofilm, thus can be applied for biosensing and/or bioremediation techniques. Using minimal mineral media growth assay as media culture, all bacteria were able to degrade naphthalene and anthracene, Staphylococcus sp. shown the strong degradation affinity. Meanwhile, Bacillus sp. tended to form strong biofilm. Electrochemical data were obtained with the cyclic voltammetry method, with a scan rate of 100 mV/s. Voltammogram profiles of all bacteria against simple benzene compounds (benzene, toluene, and xylene; concentration for each compound 1μL/mL) showed irreversible oxidation peaks at 0.20-0.40 V ppm of the analyte, producing current 50-100 μA. The measurements were taken when the solution was more stable (±10 seconds) after vigorous shaking to homogenize benzene compounds and introducing O2 into the solution. The peaks were decreasing over the next cycles, indicating the lower bioavailability of benzene compounds to be degraded with O2.


2021 ◽  
Vol 8 ◽  
Author(s):  
Emna Zeghal ◽  
Annika Vaksmaa ◽  
Hortense Vielfaure ◽  
Teun Boekhout ◽  
Helge Niemann

Plastic debris has been accumulating in the marine realm since the start of plastic mass production in the 1950s. Due to the adverse effects on ocean life, the fate of plastics in the marine environment is an increasingly important environmental issue. Microbial degradation, in addition to weathering, has been identified as a potentially relevant breakdown route for marine plastic debris. Although many studies have focused on microbial colonization and the potential role of microorganisms in breaking down marine plastic debris, little is known about fungi-plastic interactions. Marine fungi are a generally understudied group of microorganisms but the ability of terrestrial and lacustrine fungal taxa to metabolize recalcitrant compounds, pollutants, and some plastic types (e.g., lignin, solvents, pesticides, polyaromatic hydrocarbons, polyurethane, and polyethylene) indicates that marine fungi could be important degraders of complex organic matter in the marine realm, too. Indeed, recent studies demonstrated that some fungal strains from the ocean, such as Zalerion maritimum have the ability to degrade polyethylene. This mini-review summarizes the available information on plastic-fungi interactions in marine environments. We address (i) the currently known diversity of fungi colonizing marine plastic debris and provide (ii) an overview of methods applied to investigate the role of fungi in plastic degradation, highlighting their advantages and drawbacks. We also highlight (iii) the underestimated role of fungi as plastic degraders in marine habitats.


2021 ◽  
Author(s):  
Yaniv Shlosberg ◽  
Yair Farber ◽  
Salah Hasson ◽  
Valery Bulatov ◽  
Israel Schechter

Human health is consistently threatened by different species of pathogenic bacteria. To fight the spread of diseases, it is important to develop rapid methods for bacterial identification. Over the years, different kinds of biosensors were developed for this cause. Another environmental risk are polyaromatic hydrocarbons (PAHs) that may be emitted from industrial facilities and pollute environmental water and soil. One of the methods for their purification is conducted by the addition of bacteria that can degrade the PAHs, while the bacteria itself can be filtrated at the end of the process. Although many studies reported monitoring of the PAHs degradation by fluorescence, not much attention was dedicated to studying the influence of the PAHs on the intrinsic fluorescence of the degrading bacteria. In this work, we apply synchronous fluorescence (SF) measurements to study the ability of the 5 PAHs: 9Antracene carboxylic acid (9ACA), Pyrene, Perylene, Pentacene, and Chrysene to interact with bacteria and change its fluorescence spectra. We show that upon incubation of each PAH with the bacterium E.coli only the 2 PAHs 9ACA and Perylene cause an intensity decrease in the emission at λ = 300 – 375 nm, which derives from the emission of Tyrosine and Tryptophane (TT). Also, we show that upon incubation of 9ACA and Perylene with 5 different pathogenic bacteria, the intensity increase or decrease in the TT emission is unique to each bacterial species. Based on this observation, we suggest that the PAHs 9ACA and Perylene can be utilized as biosensors for bacterial identification.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Gessesse Kebede ◽  
Tekle Tafese ◽  
Ebrahim M. Abda ◽  
M. Kamaraj ◽  
Fassil Assefa

The discharge of hydrocarbons and their derivatives to environments due to human and/or natural activities cause environmental pollution (soil, water, and air) and affect the natural functioning of an ecosystem. To minimize or eradicate environmental pollution by hydrocarbon contaminants, studies showed strategies including physical, chemical, and biological approaches. Among those strategies, the use of biological techniques (especially bacterial biodegradation) is critically important to remove hydrocarbon contaminants. The current review discusses the insights of major factors that enhance or hinder the bacterial bioremediation of hydrocarbon contaminants (aliphatic, aromatic, and polyaromatic hydrocarbons) in the soil. The key factors limiting the overall hydrocarbon biodegradation are generally categorized as biotic factors and abiotic factors. Among various environmental factors, temperature range from 30 to 40°C, pH range from 5 to 8, moisture availability range from 30 to 90%, carbon/nitrogen/phosphorous (C/N/P; 100:20:1) ratio, and 10–40% of oxygen for aerobic degradation are the key factors that show positive correlation for greatest hydrocarbon biodegradation rate by altering the activities of the microbial and degradative enzymes in soil. In addition, the formation of biofilm and production of biosurfactants in hydrocarbon-polluted soil environments increase microbial adaptation to low bioavailability of hydrophobic compounds, and genes that encode for hydrocarbon degradative enzymes are critical for the potential of microbes to bioremediate soils contaminated with hydrocarbon pollutants. Therefore, this review works on the identification of factors for effective hydrocarbon biodegradation, understanding, and optimization of those factors that are essential and critical.


Sign in / Sign up

Export Citation Format

Share Document