Free Vibration Analysis the Cracked FGM Beam under Bending-Torsion Loading, Using GDQ Method

2013 ◽  
Vol 330 ◽  
pp. 942-947 ◽  
Author(s):  
Alireza Daneshmehr ◽  
D.J. Inman ◽  
A. Mohammadi Fakhar

This paper presents a theoretical investigation of free vibration analysis of a functionally graded beam (FGM) under the bending-torsion loading using a classical elasticity theory. The FG beam is assumed to have an open edge crack. It is assumed that the material properties of the simply-supported cracked beam, vary along the beam thickness following a polynomial distribution in the thickness direction. This analysis is based on the linear fracture mechanics. First of all, governing equations and boundary conditions of the FG beam are derived using Hamilton's principle. The governing equations are solved using generalized differential quadrature (GDQ) method. By applying GDQ method, the governing differential equations convert to a linear system of algebraic equations. Then solving the eigenvalue problem, natural frequencies of the FG beam can be found. The results indicate that natural frequencies in the presence of a crack are affected by the crack ratio and location.

2020 ◽  
Vol 23 (16) ◽  
pp. 3415-3428
Author(s):  
Yusuf Cunedioglu ◽  
Shkelzen Shabani

Free vibration analysis of a single edge cracked multi-layered symmetric sandwich stepped Timoshenko beams, made of functionally graded materials, is studied using finite element method and linear elastic fracture mechanic theory. The cantilever functionally graded beam consists of 50 layers, assumed that the second stage of the beam (step part) is created by machining. Thus, providing the material continuity between the two beam stages. It is assumed that material properties vary continuously, along the thickness direction according to the exponential and power laws. A developed MATLAB code is used to find the natural frequencies of three types of the stepped beam, concluding a good agreement with the known data from the literature, supported also by ANSYS software in data verification. In the study, the effects of the crack location, crack depth, power law gradient index, different material distributions, different stepped length, different cross-sectional geometries on natural frequencies and mode shapes are analysed in detail.


Author(s):  
E. F. Joubaneh ◽  
O. R. Barry

This paper presents the free vibration analysis of a sandwich beam with a tip mass using higher order sandwich panel theory (HSAPT). The governing equations of motion and boundary conditions are obtained using Hamilton’s principle. General Differential Quadrature (GDQ) is employed to solve the system governing equations of motion. The natural frequencies and mode shapes of the system are presented and Ansys simulation is performed to validate the results. Various boundary conditions are also employed to examine the natural frequencies of the sandwich beam without tip mass and the results are compared with those found in the literature. Parametric studies are conducted to examine the effect of key design parameters on the natural frequencies of the sandwich beam with and without tip mass.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
E Chuan Yang ◽  
Xiang Zhao ◽  
Ying Hui Li

Based on Euler-Bernoulli beam theory and a continuous stiffness beam model, the free vibration of rectangular-section beams made of functionally graded materials (FGMs) containing open edge cracks is studied. Assuming the material gradients follow exponential distribution along beam thickness direction, the conversion relation between the vibration governing equations of a FGM beam and that of an isotropic homogenous beam is deduced. A continuous function is used to characterize the bending stiffness of an edge cracked FGM beam. Thus, the cracked FGM beam is treated as an intact beam with continuously varying bending stiffness along its longitudinal direction. The characteristic equations of beams with different boundary conditions are obtained by transfer matrix method. To verify the validity of the proposed method, natural frequencies for intact and cracked FGM beams are calculated and compared with those obtained by three-dimensional finite element method (3D FEM) and available data in the literature. After that, further discussions are carried out to analyze the influences of crack depth, crack location, material property, and slenderness ratio on the natural frequencies of the cracked FGM beams.


Sign in / Sign up

Export Citation Format

Share Document