Delay and Delay-Variation Constrained Multicast Routing Algorithm Based on Core Selection

2013 ◽  
Vol 373-375 ◽  
pp. 1182-1187
Author(s):  
Yuan Chen Li ◽  
Wei Qun Liu

With the development of multimedia network, more and more real-time multimedia applications require a network capable of satisfying QoS constraints such as delay and delay-variation bound so that the messages reach each destination node at almost the same time within a certain specified time limit, and certain application also demand that different streams for each different destination node should reach with minimum cost under the constraints. Therefore, the delay and delay-variation constraint multicast routing problem is studied and a new strategy in core selection methods is proposed. The algorithm we propose guarantees that the delay from the source to any destination does not exceed a real-time constraint satisfying the delay-variation constraint under cost minimization. In addition, this core selection methods achieve a balance of optimizing cost and delay of the multicast tree. Simulation results show that the algorithm has low complexity and balances between the computational complexity and performance, it can also meet the requirements of real-time network communication.

2014 ◽  
Vol 556-562 ◽  
pp. 5343-5347
Author(s):  
Cheng Zhang ◽  
Wu Ma

The basis of multicast data transmission is to construct a multicast tree. The main problem concerning the construction of a multicast tree is the selection of the root of the shared tree or the core point. Therefore, the algorithm we propose guarantees that the delay from the source to any destination does not exceed a real-time constraint satisfying the delay-variation constraint under cost minimization. The core selection function in this algorithm achieves a balance of optimizing cost and delay of the multicast tree. Simulation results show that the algorithm has low complexity and balances between the computational complexity and performance.


Author(s):  
E.George Dharma Prakash Raj ◽  
Sinthu Janita Prakash ◽  
S.V.Kasmir Raja

The routing problems can be divided into two major classes. They are 1) Unicast routing and 2) Multicast routing. The Unicast routing problem is as follows. Given a source node sr, a destination node dn, a set of QoS constraints qc and an optimization goal (optional), find the best feasible path from sr to dn, which satisfies qc. The Multicast routing problem is as follows. Given a source node sr, a set st of destination nodes, a set of constraints cts and an optimization goal (optional), find the best feasible path covering sr and all nodes in st, which satisfies cts. This article presents two such Unicast QoS based algorithms called as Source Routing and the proposed Heuristic Routing. A Client Server based model has been generated to study the performance of the two algorithms with respect to the message overhead, response time and path delay. The Experiments and the results are analyzed.


2018 ◽  
Vol 7 (2.19) ◽  
pp. 12
Author(s):  
N Senthamarai ◽  
M Vijayalakshmi

Multicast is a technique for one-to-many communication over the network. It plays important role in cloud computing and reduces the transmission overhead in the private cloud environment. In this paper, build an efficient multicast tree for the multicast routing problem in which a network consists of different categories of nodes, where each category can have one or more nodes of the same characteristic which is different from the characteristics of nodes from other categories. So it is used to reduce the message traffic in such a network, to build a multicast tree and minimize the queuing delay using multicast selection algorithm.


2013 ◽  
Vol 756-759 ◽  
pp. 1850-1854
Author(s):  
Yuan Chen Li ◽  
Guo Fang Kuang

Quality of service (QoS) generally assumes more than one QoS measure which implies that routing can be categorized as an instance of routing subject to multiple constraints: such as cost, delay, bandwidth, etc. The problem of constructing multicast trees is studied to meet the QoS requirements where it is necessary to provide bounded constraints among the source and all destinations while keeping the cost of the multicast tree low. So, a kind of source-destination QoS multicast routing problem is addressed about communication networks. The algorithm we presented takes bandwidth, delay and loss rate as premise, constructs routing selected function based on shortest path, modifies selected path according to the function above so as to fit multi-QoS parameters. Simulation results show that the algorithm has both lower delay and better performance and can be extended to cases of multiple QoS parameters conveniently.


2013 ◽  
Vol 347-350 ◽  
pp. 553-558
Author(s):  
Ze Shun Zhou ◽  
Yi Xu ◽  
Jun Jie Yan ◽  
Zhong Wei Nie ◽  
La Yuan Li

Routing problem is one of the most important issues to a wireless sensor network (WSN). It is the key problem to find an efficient energy strategy for prolonging network's lifetime because power supply might be impossible. This paper discusses the multicast routing problem of WSN with multiple QoS constraints, which may deal with the delay, bandwidth, hop count and packet reception rat and surplus energy metrics, and finds a minimum resource consumption path while satisfying multiple constraints optimization conditions, and describes a network model for researching the multicast routing problem. It presents a dynamic multicast routing algorithm with multiple QoS constraints (MCQoSRA). The MCQoSRA successfully solves the QoS routing problems when multicast nodes change dynamically in the networks. The MCQoSRA only requires the local state information of the link (or node), but does not require any global network sate to be maintained. In MCQoSRA, a multicast group member can join or leave the multicast session dynamically. The MCQoSRA can effectively decrease the overhead for constructing a multicast tree and the delay of the nodes, and improve the success ratio of seeking links. Simulation results show that the MCQoSRA provides an available means to implement multicast routing, and adapt to all kinds of the topology networks, and have better expansibility.


Author(s):  
Manoj Kumar Patel ◽  
MANAS RANJAN KABAT ◽  
Chita Ranjan Tripathy

Many multimedia group applications require the construction of multicast tree satisfying the quality of service (QoS) requirements. To support real time communication, computer networks need to optimize the Delay and Delay-Variation Bounded Multicast Tree (DVBMT). The problem is to satisfy the end-to-end delay and delay-variation within an upper bound. The DVBMT problem is known to be NP complete. In this paper, we propose an efficient core selection algorithm for satisfying the end-to-end delay and delay-variation within an upper bound. The efficiency of the proposed algorithm is validated through the simulation. The simulation results reveal that our algorithm performs better than the existing heuristic algorithms.


2021 ◽  
Vol 229 ◽  
pp. 01009
Author(s):  
Amina Boudjelida ◽  
Ali Lemouari

Multicast routing consists of concurrently sending the same information from a source to a subset of all possible destinations in a computer network thus becomes an important technology communication. To solve the problem, a current approach for efficiently supporting a multicast session in a network consists of establishing a multicast tree that covers the source and all terminal nodes. This problem can be reduced to a minimal Steiner tree problem (MST) which aims to look for a tree that covers a set of nodes with a minimum total cost, the problem is NP-hard. In this paper, we investigate metaheuristics approaches for the Delay-Constrained Least-Cost (DCLC) problem, we propose a novel algorithm based on Tabu Search procedure with the Edge Betweenness (EB). The EB heuristic used first to improve KMB heuristic, able to measure the edge value to being included in a given path. The obtained solution improved using the tabu search method. The performance of the proposed algorithm is evaluated by experiments on a number of benchmark instances from the Steiner library. Experimental results show that the proposed metaheuristic gives competitive results in terms of cost and delay compared to the optimal results in Steiner library and other existing algorithms in the literature.


2015 ◽  
Vol 24 (4) ◽  
pp. 479-489
Author(s):  
Muhammad Atif Tahir ◽  
Asif Jamshed ◽  
Habib-ur Rehman ◽  
Yassine Daadaa

AbstractIn a communication network with a source node, a multicast tree is defined as a tree rooted at the source node and all its leaves being recipients of the multicast originating at the source. The tree or bandwidth cost is normally measured by its utilization of tree links along with the quality of service (QoS) measures such as delay constraint and end-to-end delay. However, if nodes are allowed to join or leave the multicast group at any time during the lifetime of the multicast connection, then the problem is known as dynamic multicast routing problem. In this article, we combine a greedy approach with static multicast routing using Tabu Search to find a low-cost dynamic multicast tree with desirable QoS parameters. The proposed algorithm is then compared with several static multicast routing algorithms. The simulation results show that, on a large number of events, i.e., where nodes are leaving or joining, the proposed algorithm is able to find multicast trees of lower cost and more desirable QoS properties.


Sign in / Sign up

Export Citation Format

Share Document