Improve the LVRT Ability of Wind Farm with DFIG by Combination of SVC and DVR

2013 ◽  
Vol 380-384 ◽  
pp. 3266-3270 ◽  
Author(s):  
Xiao Lan Wang ◽  
Long Xian ◽  
Cheng Xia Ma

According to the demand of low voltage ride through (LVRT) in China, the operation features of DFIG during grid fault are analyzed. A new topology combining SVC with a novel DVR is put forward in this paper. The problems such as slow voltage recovery in early time of the grid fault and over compensation of voltage in the later time of the fault are overcome. The over current in rotor side of DFIG during the grid fault is restricted at the same time. The simulation model for the new topology is built in MATLAB/Simulink. The effectiveness of the topology in improving the ability of LVRT is verified.

2019 ◽  
Vol 29 (2) ◽  
pp. 1-5 ◽  
Author(s):  
Zi-Xuan Zheng ◽  
Chun-Jun Huang ◽  
Ruo-Huan Yang ◽  
Xian-Yong Xiao ◽  
Chang-Song Li

2013 ◽  
Vol 291-294 ◽  
pp. 481-489 ◽  
Author(s):  
Yu Lin Hu ◽  
Lei Shi ◽  
Hao Ming Liu

This paper presents wind energy conversion model, drive shaft’s dual-mass model and generator’s transient mathematical model for the transient analysis of fixed speed asynchronous wind generators, and analyzes the transient characteristics of the wind generators under the condition of low voltage fault. The control principles of two dynamic reactive power compensation equipments as static var compensator (SVC) and static synchronous compensator (STATCOM) are introduced. Take a wind farm consists of fixed speed asynchronous wind generators as an example, the two compensation equipments are simulated in PowerFactory/DIgSILENT to compare the effort of them on enhancing the low voltage ride-through capability of the wind farm.


2014 ◽  
Vol 556-562 ◽  
pp. 1753-1756
Author(s):  
Ming Guang Zhang ◽  
Xiao Jing Chen

The control strategy based on predictive current is proposed to solve problems that destruct stable operation of grid-connected photovoltaic system during asymmetrical fall. A mathematical model of PV inverter is established to calculate current instruction; a method of tracking based on predictive current is proposed to reduce the fluctuations of 2 times frequency. In the meantime, PV inverter provides reactive power to support voltage recovery according to the depth of grid voltage sags and realize LVRT. The result also shows that the proposed control strategy can reduce wave of DC voltage and provide reactive power to support voltage recovery.


2012 ◽  
Vol 608-609 ◽  
pp. 687-691
Author(s):  
Ze Xin Zhang ◽  
Guang Qing Bao

According to the provisions of low voltage ride through capability of wind turbines in the “large-scale design and technical specifications for wind farm to grid” of china, proposed a method to simulate this low voltage ride through grid voltage by computer simulation software. The simulation method is mainly used to simulate whether the wind turbines grid can meet the low voltage ride through requirements. In order to obtain the required grid voltage, the fault simulation circuit is divided into voltage dip part and voltage recovery part, which were used to simulated 20% & 90% voltage dip and the 20% grid voltage gradually recovered to 90% grid voltage. Three-phase fault modules for the voltage dip part, Three-phase programmable voltage source module for the voltage recovery part. The simulation results show that simulation system we build can simulate the required grid voltage.


2013 ◽  
Vol 724-725 ◽  
pp. 619-622 ◽  
Author(s):  
Chia Yu Hsu ◽  
Ta Hsiu Tseng ◽  
Pei Hwa Huang

The main purpose of this paper is to study the enhancement of the Low-Voltage-Ride-Through (LVRT) capability of the wind farm with the installment of the Static Synchronous Compensator (STATCOM) and the Static Var Compensator (SVC). With more penetration of wind energy from on-shore and off-shore wind farms, utilities have been starting to set up the regulation requiring the wind turbine generators to remain connected to the grid when a fault takes place in the system which is referred to as Low-Voltage-Ride-Through (LVRT). A wind farm composed with doubly fed induction generators is used as the study system. Both the STATCOM and the SVC are utilized as the devices for enhancing the LVRT capability of the wind farm. The results are demonstrated for comparing the performance of the two devices in the improvement of voltage dynamic characteristics of the study system.


Author(s):  
Mohamed Nadour ◽  
Ahmed Essadki ◽  
Tamou Nasser

AbstractLarge integration of doubly-fed induction generator (DFIG) based wind turbines (WTs) into power networks can have significant consequences for power system operation and the quality of the energy supplied due to their excessive sensitivity towards grid disturbances. Under voltage dips, the resulting overcurrent and overvoltage in the rotor circuit and the DC link of a DFIG, could lead to the activation of the protection system and WT disconnection. This potentially results in sudden loss of several tens/hundreds of MWs of energy, and consequently intensifying the severity of the fault. This paper aims to combine the use of a crowbar protection circuit and a robust backstepping control strategy that takes into consideration of the dynamics of the magnetic flux, to improve DFIG’s Low-Voltage Ride Through capability and fulfill the latest grid code requirements. While the power electronic interfaces are protected, the WTs also provide large reactive power during the fault to assist system voltage recovery. Simulation results using Matlab/Simulink demonstrate the effectiveness of the proposed strategy in terms of dynamic response and robustness against parametric variations.


Sign in / Sign up

Export Citation Format

Share Document