crowbar protection
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 8)

H-INDEX

7
(FIVE YEARS 2)

Author(s):  
Salem Molla Endale ◽  
Milkias Berhanu Tuka

Doubly Fed Induction Generator (DFIG) has a stator winding directly coupled with grid. Whereas, rotor winding is connected via a fault-prone back to back power converters. DFIG is known to be vulnerable to the grid faults. In early times, when a fault occurred, these generators were required to disconnect from the grid to secure the generator and power converters. However, due to the increased penetration of wind turbines into the power system, grid operators demanded that the wind turbines remain connected to the grid, as disconnecting them would further disrupt the grid. When a fault at the grid terminal occur, a high stator current is induced which further result in high rotor current. This current will trigger the DC-link voltage to rise. This high currents and DC-link voltage will cause harm to the converters. Thus, in this paper work, the crowbar protection system is employed for protecting the converters against excess energy. Furthermore, the analysis of DFIG is rendered by integrating the crowbar protection with the Battery Energy Storage System (BESS) for a much effective outcome in enhancing machine to drive the fault. MATLAB-Simulink software is used for modeling and simulation. All system parameters are obtained from ADAMA-II Wind Farm.


Author(s):  
Mohamed Nadour ◽  
Ahmed Essadki ◽  
Tamou Nasser

AbstractLarge integration of doubly-fed induction generator (DFIG) based wind turbines (WTs) into power networks can have significant consequences for power system operation and the quality of the energy supplied due to their excessive sensitivity towards grid disturbances. Under voltage dips, the resulting overcurrent and overvoltage in the rotor circuit and the DC link of a DFIG, could lead to the activation of the protection system and WT disconnection. This potentially results in sudden loss of several tens/hundreds of MWs of energy, and consequently intensifying the severity of the fault. This paper aims to combine the use of a crowbar protection circuit and a robust backstepping control strategy that takes into consideration of the dynamics of the magnetic flux, to improve DFIG’s Low-Voltage Ride Through capability and fulfill the latest grid code requirements. While the power electronic interfaces are protected, the WTs also provide large reactive power during the fault to assist system voltage recovery. Simulation results using Matlab/Simulink demonstrate the effectiveness of the proposed strategy in terms of dynamic response and robustness against parametric variations.


Proceedings ◽  
2020 ◽  
Vol 58 (1) ◽  
pp. 18
Author(s):  
Payam Morsali ◽  
Pooria Morsali ◽  
Erfan Gholami Ghadikola

The energy production future is dominated by renewable energy sources driven by global warming problems and aiming at the reduction of fossil fuel dependence. Wind energy is becoming competitive with fossil fuels considering its less price and less CO2 emission production. Wind turbines consist of different types, including Doubly Fed Induction Generator (DFIG) which is a variable speed wind turbine and operates at varying speeds corresponding to the varying wind speeds from the cut-in speed through the rated wind speed to the cut-out speed. In the case of grid failure, the network voltage drops; consequently, the rotor current and DC link voltage increase which leads to damage of the rotor windings and power electronics device. Some protections are applied to the machine in order to help the Low Voltage Ride-Through (LVRT) ability of the doubly fed induction generator. In this root, the crowbar protection circuit is used widely in wind power plants. However, crowbar protection should be sized carefully due to its effects on both DC link voltage and rotor currents. In this paper, a doubly fed induction generator with crowbar protection is studied and the optimum value for the crowbar protection is derived; then, a Simulink model of a doubly fed induction generator protected by a crowbar protection is developed and used to analyze the effect of crowbar protection value on the DC link voltage and rotor currents. The results show a significant improvement in the LVRT ability of the DFIG.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4414
Author(s):  
Xu Li ◽  
Yuping Lu ◽  
Tao Huang

With high sensitivity and strong tolerance capability for the fault resistance, the fault component-based directional relay (FCBDR) has drawn considerable attention from industry and academia. However, the best application environment for FCBDR no longer exists when considering the large-scale connection of the doubly fed induction generator (DFIG)-based wind farms. Through a detailed analysis of the superimposed impedance of DFIG, this paper reveals that the performances of FCBDRs may be shown negatively impacted by the fault behaviors of DFIG when the crowbar protection inputs. In addition, this paper proposes a mitigation countermeasure to deal with those issues. The proposed countermeasure takes advantage of the different superimposed impedance features of DFIG compared with that of the synchronous generator (SG) to enhance the adaptability of the conventional FCBDRs. Extensive simulation results show that the proposed countermeasure can differentiate the fault direction clearly under different fault conditions.


Sign in / Sign up

Export Citation Format

Share Document