A Simulation of an Electrical Servo Drive Based on Optimal Control

2013 ◽  
Vol 380-384 ◽  
pp. 476-479 ◽  
Author(s):  
Xiu Qin Yang ◽  
Kai Feng Zou

In paper, the problem of robustify LQR for a class of uncertain linear systems is considered. An optimal controller is designed for the nominal system and an integral sliding surface is constructed. The ideal sliding motion can minimize a given quadratic performance index, and the reaching phase, which is inherent in conventional sliding mode control, is completely eliminated. Then the sliding mode control law is synthesized to guarantee the reachability of the specified sliding surface. The system dynamics is global robust to uncertainties which satisfy matching conditions. A GROSMC is realized. To verify the effectiveness of the proposed scheme, a robust optimal sliding mode controller is developed for rotor position control of an electrical servo drive system.

2021 ◽  
Vol 118 (2) ◽  
pp. 215
Author(s):  
Yin Fang-Chen ◽  
Wu Xiang-Cheng

This paper introduces a linear quadratic sliding mode control (LQ-SMC) scheme into a looper control system. First, according to a 1700 mm tandem hot mill, the state-space dynamic model of the looper system was established, and then, the optimal control law of the looper system was obtained based on the established model. Finally, the optimal sliding mode and optimal sliding mode control law of the LQ-SMC scheme were designed such that the sliding motion could satisfy the optimal value of the quadratic performance index. Simulation results show that the proposed control scheme has complete robustness to external disturbances that satisfies certain conditions, and the coupling between the looper angle dynamic and strip tension dynamic is also minimized.


2016 ◽  
Vol 829 ◽  
pp. 128-132 ◽  
Author(s):  
Van Van Huynh ◽  
Minh Hoang Quang Tran

In this paper, a new integral sliding mode control scheme is designed for the 3-pole active magnetic bearing system. First, a new integral sliding surface is designed such that the 3-pole active magnetic bearing system in the sliding mode is asymptotically stable under certain conditions. Then, an adaptive controller is designed to solve the unknown upper bound of matched uncertainty and guarantee the reachability of the integral sliding surface. Finally, the performance of the proposed integral sliding mode controller is applied to 3-pole active magnetic bearing system to demonstrate the efficacy of the proposed method.


Author(s):  
Zhiqiang Ma ◽  
Zheng H Zhu ◽  
Guanghui Sun

This paper proposes a fractional-order integral sliding mode control with the order 0 <  ν < 1 to stabilize the deployment of tethered spacecraft system with only tension regulation. The work in this paper is partially based on integer-order nonlinear sliding mode controller and improves its performance with fractional-order calculus. The proposed scheme makes use of integral sliding surface to obtain smaller convergence regions of state errors, and the fractional derivative is synthesized to enhance the flexibility of controller design by fining parameters for better dynamic and steady-state performance. Fractional-order observers help to eliminate external disturbances while the adaptive law is presented to remove the adverse effect in stability analyses, and fractional-order uniform ultimate boundedness is proved to guarantee the existence of the proposed sliding surface. According to theoretical analyses, the fractional order will indeed affect the dynamic and steady-state performance of control system, and the proposed method will be verified in numerical simulations compared with the nonlinear sliding mode counterpart.


Author(s):  
Chung-Chun Kung ◽  
Kuo-Ho Su

A novel adaptive fuzzy sliding-mode control (AFSMC) system for high-precision position control of a perturbed electrical servo drive is developed in this paper. The proposed AFSMC system is designed via the approximation ability of a fuzzy system to mimic the good behaviour of a total sliding-mode control (TSMC) system, which is designed without the reaching phase of a conventional sliding-mode control (SMC). In the developed system, a priori knowledge of the system information is not required. Moreover, the gradually increasing estimate upper bound, which may induce the control effort into saturation and excite unstable system dynamics in some conditions, would not exist. In the proposed controller, the adaptive tuning algorithms are developed in the sense of the Lyapunov stability theorem, so that system-tracking stability can be guaranteed. Finally, the effectiveness of the proposed control scheme is verified via the experimental results of a field-oriented control permanent magnet (PM) synchronous motor.


Author(s):  
Ryo Kikuuwe ◽  
Pablo J Prieto ◽  
J A López-Rentería

Abstract This paper reports an analysis on proxy-based sliding mode control (PSMC), which is a controller proposed by Kikuuwe & Fujimoto (2006, Proceedings of the 2006 IEEE International Conference on Robotics and Automation, pp. 25–30) originally for position control of robot manipulators. The describing function method is employed to investigate the chattering behavior of PSMC combined with a simple second-order plant with parasitic dynamics. The results show that PSMC is capable of achieving a lower tendency to chattering than the boundary-layer implementation of sliding mode control with the same sliding surface, without affecting the insensitivity to disturbance.


Author(s):  
J. Fei ◽  
Celel Batur

This paper presents an adaptive tracking controller with a proportional and integral switching surface. A new adaptive sliding mode controller based on model reference adaptive state feedback control is proposed to deal with the tracking problem for a class of linear dynamic systems. First, a proportional and integral sliding surface instead of a conventional sliding surface is chosen and then an adaptive sliding mode controller is derived and its stability is proved. It is shown that the stability of the closed-loop system can be guaranteed with the proposed adaptive sliding mode control strategy. The adaptive design is extended to the multiple inputs system. The numerical simulation is investigated to show the effectiveness of the proposed adaptive sliding mode control scheme with proportional plus integral sliding mode action.


Author(s):  
J Fei ◽  
C Batur

This paper presents an adaptive sliding mode tracking controller with a proportional and integral switching surface. A novel adaptive sliding mode controller based on model reference adaptive state feedback control is proposed to deal with the tracking problem for a class of dynamic systems. First, a proportional and integral sliding surface instead of a conventional sliding surface is chosen and then a class of adaptive sliding mode controller with integral sliding term is developed. It is shown that the stability of the closed-loop system can be guaranteed with the proposed adaptive sliding mode control strategy. The numerical simulation of a triaxial gyroscope is investigated to show the effectiveness of the proposed adaptive sliding mode control scheme with proportional plus integral sliding mode action.


Sign in / Sign up

Export Citation Format

Share Document