Indirect Sliding Mode Control with Double Integral Sliding Surface

2016 ◽  
Vol 829 ◽  
pp. 128-132 ◽  
Author(s):  
Van Van Huynh ◽  
Minh Hoang Quang Tran

In this paper, a new integral sliding mode control scheme is designed for the 3-pole active magnetic bearing system. First, a new integral sliding surface is designed such that the 3-pole active magnetic bearing system in the sliding mode is asymptotically stable under certain conditions. Then, an adaptive controller is designed to solve the unknown upper bound of matched uncertainty and guarantee the reachability of the integral sliding surface. Finally, the performance of the proposed integral sliding mode controller is applied to 3-pole active magnetic bearing system to demonstrate the efficacy of the proposed method.


Author(s):  
Zhiqiang Ma ◽  
Zheng H Zhu ◽  
Guanghui Sun

This paper proposes a fractional-order integral sliding mode control with the order 0 <  ν < 1 to stabilize the deployment of tethered spacecraft system with only tension regulation. The work in this paper is partially based on integer-order nonlinear sliding mode controller and improves its performance with fractional-order calculus. The proposed scheme makes use of integral sliding surface to obtain smaller convergence regions of state errors, and the fractional derivative is synthesized to enhance the flexibility of controller design by fining parameters for better dynamic and steady-state performance. Fractional-order observers help to eliminate external disturbances while the adaptive law is presented to remove the adverse effect in stability analyses, and fractional-order uniform ultimate boundedness is proved to guarantee the existence of the proposed sliding surface. According to theoretical analyses, the fractional order will indeed affect the dynamic and steady-state performance of control system, and the proposed method will be verified in numerical simulations compared with the nonlinear sliding mode counterpart.


Author(s):  
J. Fei ◽  
Celel Batur

This paper presents an adaptive tracking controller with a proportional and integral switching surface. A new adaptive sliding mode controller based on model reference adaptive state feedback control is proposed to deal with the tracking problem for a class of linear dynamic systems. First, a proportional and integral sliding surface instead of a conventional sliding surface is chosen and then an adaptive sliding mode controller is derived and its stability is proved. It is shown that the stability of the closed-loop system can be guaranteed with the proposed adaptive sliding mode control strategy. The adaptive design is extended to the multiple inputs system. The numerical simulation is investigated to show the effectiveness of the proposed adaptive sliding mode control scheme with proportional plus integral sliding mode action.


Author(s):  
J Fei ◽  
C Batur

This paper presents an adaptive sliding mode tracking controller with a proportional and integral switching surface. A novel adaptive sliding mode controller based on model reference adaptive state feedback control is proposed to deal with the tracking problem for a class of dynamic systems. First, a proportional and integral sliding surface instead of a conventional sliding surface is chosen and then a class of adaptive sliding mode controller with integral sliding term is developed. It is shown that the stability of the closed-loop system can be guaranteed with the proposed adaptive sliding mode control strategy. The numerical simulation of a triaxial gyroscope is investigated to show the effectiveness of the proposed adaptive sliding mode control scheme with proportional plus integral sliding mode action.


2013 ◽  
Vol 380-384 ◽  
pp. 476-479 ◽  
Author(s):  
Xiu Qin Yang ◽  
Kai Feng Zou

In paper, the problem of robustify LQR for a class of uncertain linear systems is considered. An optimal controller is designed for the nominal system and an integral sliding surface is constructed. The ideal sliding motion can minimize a given quadratic performance index, and the reaching phase, which is inherent in conventional sliding mode control, is completely eliminated. Then the sliding mode control law is synthesized to guarantee the reachability of the specified sliding surface. The system dynamics is global robust to uncertainties which satisfy matching conditions. A GROSMC is realized. To verify the effectiveness of the proposed scheme, a robust optimal sliding mode controller is developed for rotor position control of an electrical servo drive system.


2013 ◽  
Vol 846-847 ◽  
pp. 434-437 ◽  
Author(s):  
Ling Cai ◽  
Fu Yang Chen ◽  
Fei Fei Lu

In this paper, a global sliding mode control scheme is proposed for a helicopter with input time delay and disturbance. We proposed a new method for integral sliding surface. By the design of dynamic nonlinear sliding mode function, the controller has the advantage of eliminating the reaching movement of traditional sliding mode control, overcoming the effect of the disturbance and time delay. The system state variables reached the sliding surface at the very beginning by means of designing a dynamic nonlinear sliding mode function, and moved to the expected state under the control of control law. The efficiency of the proposed method is demonstrated by simulation results.


2019 ◽  
Vol 9 (6) ◽  
pp. 1124
Author(s):  
Yu Quan ◽  
Lijun Hang ◽  
Yuanbin He ◽  
Yao Zhang

In general, the integral sliding mode control (ISMC) with an integral sliding surface would lead to tracking errors under unbalanced and harmonic grid voltage conditions. In order to eliminate tracking errors under these conditions, multi-resonant items are added to the conventional integral sliding surface in the proposed strategy, which can be called multi-resonant-based sliding mode control (MRSMC). A comparison of tracking precision on the ISMC and MRSMC is analyzed. In order to regulate the system powers directly, the errors of instantaneous active and reactive powers are selected as the state variables. Finally, the output current harmonics and a majority of the doubly-fed induction generator’s (DFIG) electromagnetic torque pulsations can be removed under unbalanced and harmonic grid voltage conditions. Simulation and experimental results are presented to verify the correctness and effectiveness of the proposed strategy.


Sign in / Sign up

Export Citation Format

Share Document