hot strip mills
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 18)

H-INDEX

14
(FIVE YEARS 1)

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1873
Author(s):  
Alberto Cofiño-Villar ◽  
Florentino Alvarez-Antolin ◽  
Carlos Hugo Alvarez-Perez

Work-rolls manufactured through the Indefinite Chill Double Poured (ICDP) method present an exterior work layer manufactured in a martensitic white cast iron alloyed with 4.5 %Ni, 1.7 %Cr, and 0.7 %Nb (wt.%). In its microstructure, there are abundant carbides of the type M3C and MC, which give high resistance to wear, and graphite particles which improve the service behaviour of the rolls against thermal cycling. The core of the rolls is manufactured in grey cast iron of pearlitic matrix and spheroidal graphite. These work-rolls are used in the finishing stands in Hot Strip Mills for rolling slabs proceeding from continuous casting at 1200 °C. Through the application of a Design of Experiments (DoE), an attempt has been made to identify those manufacturing factors which have a significant effect on resistance to wear of these rolls and to find an optimal combination of levels of these factors which allow for improvement in resistance to wear. To increase resistance to wear, it is recommended to situate, simultaneously, the liquidus temperature and the percentage of Si in the respective ranges of 1250–1255 °C and 1.1–1.15 (wt.%). Higher liquidus temperatures favour the presence of the pro-eutectic constituent rather than the eutectic constituent. The outer zone of the work layer, in contact with the metal sheet, which is being rolled, does not show the graphitising effect of Si (0.8–1.15 wt.%). On the contrary, it confirms the hardening effect of the Si in solid solution of the ferrite. The addition of 0.02% of Mg (wt.%) and the inoculation of 6 kg/T of FeB tend to eliminate the graphitising effect of the Si, thus favouring that the undissolved carbon in the austenite is found to form carbides in contrast to the majority formation of graphite.


2021 ◽  
pp. 2100313
Author(s):  
Mohd Radzi Aridi ◽  
Nao-Aki Noda ◽  
Yoshikazu Sano ◽  
Kakeru Takata ◽  
Zifeng Sun

2021 ◽  
Vol 64 (5) ◽  
pp. 374-381
Author(s):  
M. Zh. Bogatova ◽  
S. I. Chibizova

The article provides a method of mathematical modeling to improve temperature operating modes of heating furnaces for hot strip mills. The object of the research is the thermal operation of a continuous walking beam furnace for heating slabs before rolling. The subject of the research is statistical modeling of metal heating in furnaces of this type. The creation of a statistical model consists of factors selection, construction of regression model, correlation analysis and assessment of the variables significance, adjustment of factors and obtaining regression equations. The main part of the research refers to a statistical model based on a comprehensive analysis. This model is based on the results of 15 automated industrial experiments on Russian heating furnaces of hot strip mills and describes the heating process in walking-beam furnace with acceptable accuracy. The adaptation of the statistical model and error calculation has been carried out. The article contains graphs comparing real temperatures and temperatures calculated on the basis of mathematical and statistical models for one of the experiments. The main conclusions are formulated based on the results of the research done. For the first time in metallurgical practice, a statistical model has been developed that describes the process of metal heating in a five-zone continuous furnace with eight heating subzones. Since the regression function is defined, interpreted and justified, and the assessment of the accuracy of the regression analysis meets the requirements, it can be assumed that the model and predicted values have sufficient reliability.


2021 ◽  
Vol 118 (2) ◽  
pp. 215
Author(s):  
Yin Fang-Chen ◽  
Wu Xiang-Cheng

This paper introduces a linear quadratic sliding mode control (LQ-SMC) scheme into a looper control system. First, according to a 1700 mm tandem hot mill, the state-space dynamic model of the looper system was established, and then, the optimal control law of the looper system was obtained based on the established model. Finally, the optimal sliding mode and optimal sliding mode control law of the LQ-SMC scheme were designed such that the sliding motion could satisfy the optimal value of the quadratic performance index. Simulation results show that the proposed control scheme has complete robustness to external disturbances that satisfies certain conditions, and the coupling between the looper angle dynamic and strip tension dynamic is also minimized.


Sign in / Sign up

Export Citation Format

Share Document