Finite Element Model Updating of a Prestressed Concrete Continuous Bridge Based on Dynamic Monitoring

2013 ◽  
Vol 405-408 ◽  
pp. 1645-1650
Author(s):  
Gang Xue ◽  
Wei Yu Bai ◽  
Xian Wang

The finite element model modified technique based on optimization principle is benefit for the model updating of the large bridge structures. By the ambient vibration test information provided by health monitoring system of huanghe bridge II in baotou , this article adopted corrected parameter based on structural eigenvalue sensitivity analysis to update the bridge dynamic model.The fundamental vibrational frequency of updated finite element model is more closer to the measured result under ambient excitation, which indicates that the optimization algorithm provided by large-scale general software can carry out the model updating effectively.

2010 ◽  
Vol 168-170 ◽  
pp. 2263-2270 ◽  
Author(s):  
Matthew Hiatt ◽  
Annika Mathiasson ◽  
John Okwori ◽  
Seung Seop Jin ◽  
Shen Shang ◽  
...  

In this paper, in-field ambient vibration testing of a highway bridge in South Korea under traffic loadings has been conducted to update its finite element model for future predictive analysis and diagnosis purpose. The research results presented in this paper are outcomes from an international REU (Research Experience for Undergraduates) program in smart structures funded by US-NSF (National Science Foundation) and hosted abroad by the Korean Advanced Institute of Science and Technology (KAIST). The monitoring, modeling, and model updating of civil infrastructures are vital in maintaining new design and maintenance standards. Using the frequency domain decomposition (FDD), experimental modal properties of the structure were found and, after a finite element model was created and updated based on the modal properties. From the results, it has been concluded that (a) the FDD method successfully identified the modal characteristics of the structure from ambient vibration, (b) that model updating improved the accuracy of the finite element model, (c) Representing the structural supports as springs in the FEM improved the results from the ideally supported model.


2009 ◽  
Vol 16 (1) ◽  
pp. 75-87 ◽  
Author(s):  
H. Shahverdi ◽  
C. Mares ◽  
W. Wang ◽  
J.E. Mottershead

The need for high fidelity models in the aerospace industry has become ever more important as increasingly stringent requirements on noise and vibration levels, reliability, maintenance costs etc. come into effect. In this paper, the results of a finite element model updating exercise on a Westland Lynx XZ649 helicopter are presented. For large and complex structures, such as a helicopter airframe, the finite element model represents the main tool for obtaining accurate models which could predict the sensitivities of responses to structural changes and optimisation of the vibration levels. In this study, the eigenvalue sensitivities with respect to Young's modulus and mass density are used in a detailed parameterisation of the structure. A new methodology is developed using an unsupervised learning technique based on similarity clustering of the columns of the sensitivity matrix. An assessment of model updating strategies is given and comparative results for the correction of vibration modes are discussed in detail. The role of the clustering technique in updating large-scale models is emphasised.


2013 ◽  
Vol 540 ◽  
pp. 79-86
Author(s):  
De Jun Wang ◽  
Yang Liu

Finite element (FE) model updating of structures using vibration test data has received considerable attentions in recent years due to its crucial role in fields ranging from establishing a reality-consistent structural model for dynamic analysis and control, to providing baseline model for damage identification in structural health monitoring. Model updating is to correct the analytical finite element model using test data to produce a refined one that better predict the dynamic behavior of structure. However, for real complex structures, conventional updating methods is difficult to be utilized to update the FE model of structures due to the heavy computational burden for the dynamic analysis. Meta-model is an effective surrogate model for dynamic analysis of large-scale structures. An updating method based on the combination between meta-model and component mode synthesis (CMS) is proposed to improve the efficiency of model updating of large-scale structures. The effectiveness of the proposed method is then validated by updating a scaled suspender arch bridge model using the simulated data.


Sign in / Sign up

Export Citation Format

Share Document