frequency domain decomposition
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 33)

H-INDEX

11
(FIVE YEARS 1)

Wood Research ◽  
2021 ◽  
Vol 66 (6) ◽  
pp. 1006-1014
Author(s):  
SERTAÇ TUHTA ◽  
FURKAN GÜNDAY

In this article, the dynamic parameters (frequencies, mode shapes, damping ratios) of the uncoated wooden shed and the coated by silicon dioxide are compared using the operational modal analysis method. Ambient excitation was provided from micro tremor ambient vibration data on ground level. Enhanced frequency domain decomposition (EFDD) was used for output. Very best correlation was found between mode shapes. Nano-SiO2 gel applied to the entire outer surface of the red oak shed has an average of 14.54% difference in frequency values and 13.53% in damping ratios, proving that nanomaterials can be used to increase internal rigidity in wooden slabs. High adherence of silicon dioxide to wooden surfaces was observed as another important result of this study.


2021 ◽  
Vol 33 (2) ◽  
pp. 75-93
Author(s):  
Víctor Samaniego Galindo ◽  
Iván Palacios Serrano ◽  
José Placencia León ◽  
Milton Muñoz Calle ◽  
Santiago González Martínez ◽  
...  

En este artículo se presenta la aplicación de métodos de análisis modal operacional (OMA, Operational Modal Analysis) con el objetivo de caracterizar los parámetros modales (v.g. frecuencias y modos de vibración) de una edificación. El estudio se realiza sobre un escenario real consistente en un edificio esencial. En concreto se emplea: el método de descomposición en el dominio de la frecuencia (FDD, Frequency Domain Decomposition) y su versión mejorada (EFDD, Enhanced-FDD). En una primera etapa, se lleva a cabo una evaluación estructural preliminar del edificio (empleando el método de inspección visual rápida, RVS), un levantamiento de dimensiones y ensayos en campo para la caracterización mecánica de sus componentes, todo ello con el propósito de conseguir un análisis modal convencional lo más fiable posible en términos de sus parámetros modales. Con base en este análisis modal, se diseña un plan de instrumentación con acelerómetros triaxiales de sistemas microelectromecánicos (MEMS); el proceso de instrumentación abarca tres etapas: la adquisición, el control y el almacenamiento de información. La principal contribución de este trabajo consiste en la evaluación de la aplicación de los métodos FDD y EFDD sobre un edificio esencial, con la particularidad del uso de vibraciones de microsismicidad para la identificación de parámetros modales. El análisis de los resultados obtenidos determina una frecuencia fundamental del edificio de 1.43 Hz, y evidencia un comportamiento modal no recomendado.


2021 ◽  
Vol 9 (6) ◽  
pp. 1441-1457
Author(s):  
Mauro Häusler ◽  
Paul Richmond Geimer ◽  
Riley Finnegan ◽  
Donat Fäh ◽  
Jeffrey Ralston Moore

Abstract. Natural rock arches are rare and beautiful geologic landforms with important cultural value. As such, their management requires periodic assessment of structural integrity to understand environmental and anthropogenic influences on arch stability. Measurements of passive seismic vibrations represent a rapid and non-invasive technique to describe the dynamic properties of natural arches, including resonant frequencies, modal damping ratios, and mode shapes, which can be monitored over time for structural health assessment. However, commonly applied spectral analysis tools are often limited in their ability to resolve characteristics of closely spaced or complex higher-order modes. Therefore, we investigate two techniques well-established in the field of civil engineering through application to a set of natural arches previously characterized using polarization analysis and spectral peak-picking techniques. Results from enhanced frequency domain decomposition and parametric covariance-driven stochastic subspace identification modal analyses showed generally good agreement with spectral peak-picking and frequency-dependent polarization analyses. However, we show that these advanced techniques offer the capability to resolve closely spaced modes including their corresponding modal damping ratios. In addition, due to preservation of phase information, enhanced frequency domain decomposition allows for direct and convenient three-dimensional visualization of mode shapes. These techniques provide detailed characterization of dynamic parameters, which can be monitored to detect structural changes indicating damage and failure, and in addition have the potential to improve numerical models used for arch stability assessment. Results of our study encourage broad adoption and application of these advanced modal analysis techniques for dynamic analysis of a wide range of geological features.


2021 ◽  
Author(s):  
R. B. Hageman ◽  
A. Andoniu ◽  
A. Benhamou

Abstract Large modern container ships feature an open cross section which results in a low stiffness of the vessel to global hull excitation. The contribution of whipping is a significant portion of the overall acceleration and stress response of such a vessel. Whipping results in an increase of the maximum hull girder bending moment experienced by the vessel as well as an increase in the fatigue accumulation of critical details. In this research, we present damping estimates based on in-service measurements from a container ship. An array of accelerometers was used to derive the first three vertical and first twist vibration modes. The flexural vibrations were isolated using two different methods: first, the Enhanced Frequency Domain Decomposition and secondly, the time domain Stochastic Subspace Identification. Both methods were applied to four representative voyages of the vessel covering a variety of environmental and loading conditions. On the two- and three-node vertical vibration modes, consistent results between both methods have been obtained. Both the four-node vertical vibration mode and the twist mode showed larger deviations between the two methods. On the vertical vibration modes, the damping is between 0.5 and 2%. On the twist modes, the damping is significantly larger at 5% and up. A correlation between the combined damping and the significant wave height was observed for the different flexural modes.


2021 ◽  
Vol 55 (3) ◽  
Author(s):  
Sertaç Tuhta ◽  
Furkan Günday

In this article, the dynamic parameters (frequencies, mode shapes, damping ratios) of a scaled concrete chimney and the dynamic parameters (frequencies, mode shapes, damping ratios) of the entire outer surface of the 80-micron-thick titanium dioxide are compared using the operational modal analysis method. Ambient excitation was provided from micro tremor ambient vibration data at ground level. Enhanced Frequency Domain Decomposition (EFDD) is used for the output-only modal identification. From this study, very best correlation is found between the mode shapes. Titanium dioxide applied to the entire outer surface of the scaled concrete chimney has an average of 16.34 % difference in frequency values and 9.81 % in damping ratios, proving that nanomaterials can be used to increase the rigidity in chimneys, in other words, for reinforcement. Another important result determined in the study is that it has been observed that the adherence of titanium dioxide and similar nanomaterials mentioned in the introduction to concrete chimney surfaces is at the highest level.


Author(s):  
Paraic Quike ◽  
Eugene J. OBrien ◽  
Cathal Bowe ◽  
Daniel Cantero ◽  
Abdollah Malekjafarian

An Irish Rail intercity train was instrumented for a period of one month with inertial sensors. In this paper, a novel calibration algorithm is proposed to determine, with reasonable accuracy, vehicle model parameters from the measured vehicle response data. Frequency domain decomposition (FDD) is used to find the dominant frequencies in the captured data. Randomly chosen 2 km data segments are chosen from a number of datasets, thereby averaging out the effects of variations in track longitudinal profile, track stiffness, signal noise and other unknowns. The remaining dominant peaks are taken to be vehicle frequencies. An optimisation technique known as Cross Entropy is used to find vehicle mass and stiffness properties that best match modal vehicle eigenfrequencies identified in the frequency analysis. Finally, the calibrated vehicle is run over a measured track profile and the resulting model output is compared to measured data to validate the results.


Sign in / Sign up

Export Citation Format

Share Document