Gray-Scale Image Matching Technology Based on Artificial Fish Swarm Algorithm

2013 ◽  
Vol 411-414 ◽  
pp. 1295-1298 ◽  
Author(s):  
Jun Lin Zhu ◽  
Zu Lin Wang ◽  
Hui Liu

Aiming at the problem of slow speed in image matching,anti-interference difference and relatively poor ability to resist deformation,proposed a fast image matching method based on artificial fish swarm algorithm (AFSA). In the same test environment,Compared with the image matching method based on particle swarm optimization (PSO) algorithm and found,the method is superior to image matching method based on particle swarm optimization,in matching speed and noise resistance ability and deformation resistance ability has a marked improvement.

Kybernetes ◽  
2016 ◽  
Vol 45 (2) ◽  
pp. 210-222 ◽  
Author(s):  
Qichang Duan ◽  
Mingxuan Mao ◽  
Pan Duan ◽  
Bei Hu

Purpose – The purpose of this paper is to solve the problem that the standard particle swarm optimization (PSO) algorithm has a low success rate when applied to the optimization of multi-dimensional and multi-extreme value functions, the authors would introduce the extended memory factor to the PSO algorithm. Furthermore, the paper aims to improve the convergence rate and precision of basic artificial fish swarm algorithm (FSA), a novel FSA optimized by PSO algorithm with extended memory (PSOEM-FSA) is proposed. Design/methodology/approach – In PSOEM-FSA, the extended memory for PSO is introduced to store each particle’ historical information comprising of recent places, personal best positions and global best positions, and a parameter called extended memory effective factor is employed to describe the importance of extended memory. Then, stability region of its deterministic version in a dynamic environment is analyzed by means of the classic discrete control theory. Furthermore, the extended memory factor is applied to five kinds of behavior pattern for FSA, including swarming, following, remembering, communicating and searching. Findings – The paper proposes a new intelligent algorithm. On the one hand, this algorithm makes the fish swimming have the characteristics of the speed of inertia; on the other hand, it expands behavior patterns for the fish to choose in the search process and achieves higher accuracy and convergence rate than PSO-FSA, owning to extended memory beneficial to direction and purpose during search. Simulation results verify that these improvements can reduce the blindness of fish search process, improve optimization performance of the algorithm. Research limitations/implications – Because of the chosen research approach, the research results may lack persuasion. In the future study, the authors will conduct more experiments to understand the behavior of PSOEM-FSA. In addition, there are mainly two aspects that the performance of this algorithm could be further improved. Practical implications – The proposed algorithm can be used to many practical engineering problems such as tracking problems. Social implications – The authors hope that the PSOEM-FSA can increase a branch of FSA algorithm, and enrich the content of the intelligent algorithms to some extent. Originality/value – The novel optimized FSA algorithm proposed in this paper improves the convergence speed and searching precision of the ordinary FSA to some degree.


Author(s):  
T. O. Ting

In this chapter, the main objective of maximizing the Material Reduction Rate (MRR) in the drilling process is carried out. The model describing the drilling process is adopted from the authors' previous work. With the model in hand, a novel algorithm known as Weightless Swarm Algorithm is employed to solve the maximization of MRR due to some constraints. Results show that WSA can find solutions effectively. Constraints are handled effectively, and no violations occur; results obtained are feasible and valid. Results are then compared to previous results by Particle Swarm Optimization (PSO) algorithm. From this comparison, it is quite impossible to conclude which algorithm has a better performance. However, in general, WSA is more stable compared to PSO, from lower standard deviations in most of the cases tested. In addition, the simplicity of WSA offers abundant advantages as the presence of a sole parameter enables easy parameter tuning and thereby enables this algorithm to perform to its fullest.


2018 ◽  
Vol 10 (12) ◽  
pp. 4445 ◽  
Author(s):  
Lejun Ma ◽  
Huan Wang ◽  
Baohong Lu ◽  
Changjun Qi

In view of the low efficiency of the particle swarm algorithm under multiple constraints of reservoir optimal operation, this paper introduces a particle swarm algorithm based on strongly constrained space. In the process of particle optimization, the algorithm eliminates the infeasible region that violates the water balance in order to reduce the influence of the unfeasible region on the particle evolution. In order to verify the effectiveness of the algorithm, it is applied to the calculation of reservoir optimal operation. Finally, this method is compared with the calculation results of the dynamic programming (DP) and particle swarm optimization (PSO) algorithm. The results show that: (1) the average computational time of strongly constrained particle swarm optimization (SCPSO) can be thought of as the same as the PSO algorithm and lesser than the DP algorithm under similar optimal value; and (2) the SCPSO algorithm has good performance in terms of finding near-optimal solutions, computational efficiency, and stability of optimization results. SCPSO not only improves the efficiency of particle evolution, but also avoids excessive improvement and affects the computational efficiency of the algorithm, which provides a convenient way for particle swarm optimization in reservoir optimal operation.


2015 ◽  
Vol 740 ◽  
pp. 401-404
Author(s):  
Yun Zhi Li ◽  
Quan Yuan ◽  
Yang Zhao ◽  
Qian Hui Gang

The particle swarm optimization (PSO) algorithm as a stochastic search algorithm for solving reactive power optimization problem. The PSO algorithm converges too fast, easy access to local convergence, leading to convergence accuracy is not high, to study the particle swarm algorithm improvements. The establishment of a comprehensive consideration of the practical constraints and reactive power regulation means no power optimization mathematical model, a method using improved particle swarm algorithm for reactive power optimization problem, the algorithm weighting coefficients and inactive particles are two aspects to improve. Meanwhile segmented approach to particle swarm algorithm improved effectively address the shortcomings evolution into local optimum and search accuracy is poor, in order to determine the optimal reactive power optimization program.


2008 ◽  
Vol 2008 ◽  
pp. 1-10 ◽  
Author(s):  
Dan Bratton ◽  
Tim Blackwell

Simplified forms of the particle swarm algorithm are very beneficial in contributing to understanding how a particle swarm optimization (PSO) swarm functions. One of these forms, PSO with discrete recombination, is extended and analyzed, demonstrating not just improvements in performance relative to a standard PSO algorithm, but also significantly different behavior, namely, a reduction in bursting patterns due to the removal of stochastic components from the update equations.


Author(s):  
Yi Liu ◽  
Sabina Shahbazzade

Considered the cooperation of the container truck and quayside container crane in the container terminal, this paper constructs the model of the quay cranes operation and trucks scheduling problem in the container terminal. And the hybrid intelligence swarm algorithm combined the particle swarm optimization algorithm(PSO) with artificial fish swarm algorithm (AFSA) was proposed. The hybrid algorithm (PSO-AFSA) adopt the particle swarm optimization algorithm to produce diverse original paths, optimization of the choice nodes set of the problem, use AFSA's preying and chasing behavior improved the ability of PSO to avoid being premature. The proposed algorithm has more effectiveness, quick convergence and feasibility in solving the problem. The results of stimulation show that the scheduling operation efficiency of container terminal is improved and optimized.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Dong Yumin ◽  
Zhao Li

Quantum behaved particle swarm algorithm is a new intelligent optimization algorithm; the algorithm has less parameters and is easily implemented. In view of the existing quantum behaved particle swarm optimization algorithm for the premature convergence problem, put forward a quantum particle swarm optimization algorithm based on artificial fish swarm. The new algorithm based on quantum behaved particle swarm algorithm, introducing the swarm and following activities, meanwhile using the adaptive parameters, to avoid it falling into local extremum of population. The experimental results show the improved algorithm to improve the optimization ability of the algorithm.


Sign in / Sign up

Export Citation Format

Share Document