Study on Free Search for Combinatorial Optimization Problem

2013 ◽  
Vol 411-414 ◽  
pp. 1904-1910
Author(s):  
Kai Zhong Jiang ◽  
Tian Bo Wang ◽  
Zhong Tuan Zheng ◽  
Yu Zhou

An algorithm based on free search is proposed for the combinatorial optimization problems. In this algorithm, a feasible solution is converted into a full permutation of all the elements and a transformation of one solution into another solution can be interpreted the transformation of one permutation into another permutation. Then, the algorithm is combined with intersection elimination. The discrete free search algorithm greatly improves the convergence rate of the search process and enhances the quality of the results. The experiment results on TSP standard data show that the performance of the proposed algorithm is increased by about 2.7% than that of the genetic algorithm.

2011 ◽  
Vol 421 ◽  
pp. 559-563
Author(s):  
Yong Chao Gao ◽  
Li Mei Liu ◽  
Heng Qian ◽  
Ding Wang

The scale and complexity of search space are important factors deciding the solving difficulty of an optimization problem. The information of solution space may lead searching to optimal solutions. Based on this, an algorithm for combinatorial optimization is proposed. This algorithm makes use of the good solutions found by intelligent algorithms, contracts the search space and partitions it into one or several optimal regions by backbones of combinatorial optimization solutions. And optimization of small-scale problems is carried out in optimal regions. Statistical analysis is not necessary before or through the solving process in this algorithm, and solution information is used to estimate the landscape of search space, which enhances the speed of solving and solution quality. The algorithm breaks a new path for solving combinatorial optimization problems, and the results of experiments also testify its efficiency.


2013 ◽  
Vol 651 ◽  
pp. 879-884
Author(s):  
Qi Wang ◽  
Ying Min Wang ◽  
Yan Ni Gou

The matched field processing (MFP) for localization usually needs to match all the replica fields in the observation sea with the received fields, and then find the maximum peaks in the matched results, so how to find the maximum in the results effectively and quickly is a problem. As known the classical simulated annealing (CSA) which has the global optimization capability is used widely for combinatorial optimization problems. For passive localization the position of the source can be recognized as a combinatorial optimization problem about range and depth, so a new matched field processing based on CSA is proposed. In order to evaluate the performance of this method, the normal mode was used to calculate the replica field. Finally the algorithm was evaluated by the dataset in the Mediterranean Sea in 1994. Comparing to the conventional matched field passive localization (CMFP), it can be conclude that the new one can localize optimum peak successfully where the output power of CMFP is maximum, meanwhile it is faster than CMFP.


2021 ◽  
Author(s):  
Mehdy Roayaei

Abstract ‎Grey Wolf Optimizer (GWO) is a population-based evolutionary algorithm inspired by the hunting behaviour of grey wolves‎. ‎GWO‎, ‎in its basic form‎, ‎is a real coded algorithm‎, ‎therefore‎, ‎it needs modifications to deal with binary optimization problems‎. ‎In this paper‎, ‎we review previous works on binarization of GWO‎, ‎and classify them with respect to their encoding scheme‎, ‎updating strategy‎, ‎and transfer function‎. ‎Then‎, ‎we propose a novel binary GWO algorithm (named SetGWO)‎, ‎which is based on set encoding and uses set operations in its updating strategy‎. ‎Experimental results on different real-world combinatorial optimization problems and different datasets‎, ‎show that SetGWO outperforms other existing binary GWO algorithms in terms of quality of solutions‎, ‎running time‎, ‎and scalability‎.


2011 ◽  
Vol 19 (4) ◽  
pp. 597-637 ◽  
Author(s):  
Francisco Chicano ◽  
L. Darrell Whitley ◽  
Enrique Alba

A small number of combinatorial optimization problems have search spaces that correspond to elementary landscapes, where the objective function f is an eigenfunction of the Laplacian that describes the neighborhood structure of the search space. Many problems are not elementary; however, the objective function of a combinatorial optimization problem can always be expressed as a superposition of multiple elementary landscapes if the underlying neighborhood used is symmetric. This paper presents theoretical results that provide the foundation for algebraic methods that can be used to decompose the objective function of an arbitrary combinatorial optimization problem into a sum of subfunctions, where each subfunction is an elementary landscape. Many steps of this process can be automated, and indeed a software tool could be developed that assists the researcher in finding a landscape decomposition. This methodology is then used to show that the subset sum problem is a superposition of two elementary landscapes, and to show that the quadratic assignment problem is a superposition of three elementary landscapes.


2013 ◽  
Vol 21 (4) ◽  
pp. 625-658 ◽  
Author(s):  
Leticia Hernando ◽  
Alexander Mendiburu ◽  
Jose A. Lozano

The solution of many combinatorial optimization problems is carried out by metaheuristics, which generally make use of local search algorithms. These algorithms use some kind of neighborhood structure over the search space. The performance of the algorithms strongly depends on the properties that the neighborhood imposes on the search space. One of these properties is the number of local optima. Given an instance of a combinatorial optimization problem and a neighborhood, the estimation of the number of local optima can help not only to measure the complexity of the instance, but also to choose the most convenient neighborhood to solve it. In this paper we review and evaluate several methods to estimate the number of local optima in combinatorial optimization problems. The methods reviewed not only come from the combinatorial optimization literature, but also from the statistical literature. A thorough evaluation in synthetic as well as real problems is given. We conclude by providing recommendations of methods for several scenarios.


2021 ◽  
Vol 2 (1) ◽  
pp. 1-29
Author(s):  
Hayato Ushijima-Mwesigwa ◽  
Ruslan Shaydulin ◽  
Christian F. A. Negre ◽  
Susan M. Mniszewski ◽  
Yuri Alexeev ◽  
...  

Emerging quantum processors provide an opportunity to explore new approaches for solving traditional problems in the post Moore’s law supercomputing era. However, the limited number of qubits makes it infeasible to tackle massive real-world datasets directly in the near future, leading to new challenges in utilizing these quantum processors for practical purposes. Hybrid quantum-classical algorithms that leverage both quantum and classical types of devices are considered as one of the main strategies to apply quantum computing to large-scale problems. In this article, we advocate the use of multilevel frameworks for combinatorial optimization as a promising general paradigm for designing hybrid quantum-classical algorithms. To demonstrate this approach, we apply this method to two well-known combinatorial optimization problems, namely, the Graph Partitioning Problem, and the Community Detection Problem. We develop hybrid multilevel solvers with quantum local search on D-Wave’s quantum annealer and IBM’s gate-model based quantum processor. We carry out experiments on graphs that are orders of magnitude larger than the current quantum hardware size, and we observe results comparable to state-of-the-art solvers in terms of quality of the solution. Reproducibility : Our code and data are available at Reference [1].


2021 ◽  
Vol 10 (9) ◽  
pp. 125-131
Author(s):  
Adedeji Oluyinka Titilayo ◽  
Alade Oluwaseun Modupe ◽  
Makinde Bukola Oyeladun ◽  
OYELEYE Taye E

Job Shop Problem (JSP) is an optimization problem in computer science and operations research in which jobs are assigned to resources at particular times. Each operation has a specific machine that it needs to be processed on and only one operation in a job can be processed at a given time. This problem is one of the best known combinatorial optimization problems. The aim of this project is to adapt Bat, Bee, Firefly, and Flower pollination algorithms, implement and evaluate the developed algorithms for solving Job Shop Problem.


2000 ◽  
Vol 8 (3) ◽  
pp. 291-309 ◽  
Author(s):  
Alberto Bertoni ◽  
Marco Carpentieri ◽  
Paola Campadelli ◽  
Giuliano Grossi

In this paper, a genetic model based on the operations of recombination and mutation is studied and applied to combinatorial optimization problems. Results are: The equations of the deterministic dynamics in the thermodynamic limit (infinite populations) are derived and, for a sufficiently small mutation rate, the attractors are characterized; A general approximation algorithm for combinatorial optimization problems is designed. The algorithm is applied to the Max Ek-Sat problem, and the quality of the solution is analyzed. It is proved to be optimal for k≥3 with respect to the worst case analysis; for Max E3-Sat the average case performances are experimentally compared with other optimization techniques.


Sign in / Sign up

Export Citation Format

Share Document