Research on a Five-Phase In-Wheel Permanent-Magnet Synchronous Machine

2013 ◽  
Vol 416-417 ◽  
pp. 144-148
Author(s):  
Ping Zheng ◽  
Yi Sui ◽  
Bin Yu ◽  
Fan Wu ◽  
Peng Fei Wang

This paper discusses the design of a fault-tolerant Permanent-Magnet Synchronous Machine (PMSM) for electric vehicles. The investigated machine is a five-phase in-wheel machine with 40 slots and 42 poles. The electromagnetic performance of double layer and single layer windings are compared based finite element analysis. The magnetic isolation abilities of the two winding types are also compared. Finally, a 12kW five-phase fault-tolerant machine which is able to meet the demand of electric drive system is designed and evaluated.

2015 ◽  
Vol 117 (17) ◽  
pp. 17B521 ◽  
Author(s):  
Yi Sui ◽  
Ping Zheng ◽  
Fan Wu ◽  
Pengfei Wang ◽  
Luming Cheng ◽  
...  

Author(s):  
Moritz Künzler ◽  
Robin Pflüger ◽  
Robert Lehmann ◽  
Quentin Werner

AbstractFinding the optimum design of electrical machines for a certain purpose is a time-consuming task. First results can be achieved, however, with scaling known machine designs in length and turns per coil by means of analytical equations, while scaling in diameter requires finite element analysis (FEA), since electromagnetic properties change significantly. In this paper, the influence of diameter, length and turns per coil on the torque, power and efficiency of a permanent magnet synchronous machine (PMSM) are investigated in a sensitivity analysis. Furthermore, their impact on energy consumption in different drive cycles and different vehicle types is outlined. A highway car and a city car are compared in a highway cycle, a city cycle and the Worldwide Harmonized Light Vehicle test Cycle. The results describe significant differences in energy consumption for different machine designs in one application but also between different applications. This highlights the necessity to decide whether or not the powertrain should be optimized for a single purpose or for universal use.


Sign in / Sign up

Export Citation Format

Share Document