New Development of the P and H-P Version Finite Element Method with Quasi-Uniform Meshes for Elliptic Problems

2013 ◽  
Vol 444-445 ◽  
pp. 671-675
Author(s):  
Jian Ming Zhang ◽  
Yong He

In recent three decades, the finite element method (FEM) has rapidly developed as an important numerical method and used widely to solve large-scale scientific and engineering problems. In the fields of structural mechanics such as civil engineering , automobile industry and aerospace industry, the finite element method has successfully solved many engineering practical problems, and it has penetrated almost every field of today's sciences and engineering, such as material science, electricmagnetic fields, fluid dynamics, biology, etc. In this paper, we will overview and summarize the development of the p and h-p version finite element method, and introduce some recent new development and our newest research results of the p and h-p version finite element method with quasi-uniform meshes in three dimensions for elliptic problems.

Author(s):  
Er. Hardik Dhull

The finite element method is a numerical method that is used to find solution of mathematical and engineering problems. It basically deals with partial differential equations. It is very complex for civil engineers to study various structures by using analytical method,so they prefer finite element methods over the analytical methods. As it is an approximate solution, therefore several limitationsare associated in the applicationsin civil engineering due to misinterpretationof analyst. Hence, the main aim of the paper is to study the finite element method in details along with the benefits and limitations of using this method in analysis of building components like beams, frames, trusses, slabs etc.


1969 ◽  
Vol 4 (3) ◽  
pp. 163-168
Author(s):  
H Stordahl ◽  
H Christensen

The finite-element method (1) (2)∗ is increasingly used in the stress analysis of mechanical-engineering problems. It is the purpose of this paper to described how the finite-element method can be used as an effective tool in the design of rotors. Up to the present time this method has mainly been used in the analysis of two-dimensional problems. However, a special class of three-dimensional problems, namely axi-symmetric rotors, can be treated as a nearly two-dimensional problem. This paper summarizes the development of the finite-element method as applied to the analysis of the axi-symmetric rotor. A computer programme is then briefly described, and the application of the method to the solution of three examples taken from practical engineering experience are presented.


1994 ◽  
Vol 18 (11) ◽  
pp. 1083-1105 ◽  
Author(s):  
W. G. Habashi ◽  
M. Robichaud ◽  
V.-N. Nguyen ◽  
W. S. Ghaly ◽  
M. Fortin ◽  
...  

2018 ◽  
Vol 12 (1) ◽  
pp. 113-122
Author(s):  
Bo Liu ◽  
◽  
Kenjiro T. Miura ◽  
Shin Usuki

For structure analysis with the finite element method (FEM), the hexahedral element is preferable to the tetrahedral one from the viewpoint of accuracy. Previously, we had introduced a label-driven subdivision method for a two-dimensional mesh and showed that the meshes generated by our method were useful for structural analyses. In this study, we extend our two-dimensional algorithm to three-dimensions and verify that the meshes generated by the proposed mesh-subdivision algorithm are useful for structural analyses.


Sign in / Sign up

Export Citation Format

Share Document