Research of Large-Scale Offshore Wind Farm Collection System Short Circuit Equivalent Network

2013 ◽  
Vol 448-453 ◽  
pp. 1732-1737
Author(s):  
Liu Bin ◽  
Hong Wei Cui ◽  
Li Xu ◽  
Kun Wang ◽  
Zhu Zhan ◽  
...  

This paper analyses the characteristics of large-scale offshore wind farm collection network and the impact of the medium voltage collection system optimization,while from the electrical technology point,it proposes the short circuit current of the collection network computational model and algorithms,based on the principle of equivalent circuit.Taking a wind power coolection system planned for a certain offshore wind farm planning for example, the validity of the model and algorithm is verified.

2015 ◽  
Vol 109 ◽  
pp. 623-634 ◽  
Author(s):  
Euan Barlow ◽  
Diclehan Tezcaner Öztürk ◽  
Matthew Revie ◽  
Evangelos Boulougouris ◽  
Alexander H. Day ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2190 ◽  
Author(s):  
Rafael Dawid ◽  
David McMillan ◽  
Matthew Revie

This paper for the first time captures the impact of uncertain maintenance action times on vessel routing for realistic offshore wind farm problems. A novel methodology is presented to incorporate uncertainties, e.g., on the expected maintenance duration, into the decision-making process. Users specify the extent to which these unknown elements impact the suggested vessel routing strategy. If uncertainties are present, the tool outputs multiple vessel routing policies with varying likelihoods of success. To demonstrate the tool’s capabilities, two case studies were presented. Firstly, simulations based on synthetic data illustrate that in a scenario with uncertainties, the cost-optimal solution is not necessarily the best choice for operators. Including uncertainties when calculating the vessel routing policy led to a 14% increase in the number of wind turbines maintained at the end of the day. Secondly, the tool was applied to a real-life scenario based on an offshore wind farm in collaboration with a United Kingdom (UK) operator. The results showed that the assignment of vessels to turbines generated by the tool matched the policy chosen by wind farm operators. By producing a range of policies for consideration, this tool provided operators with a structured and transparent method to assess trade-offs and justify decisions.


2020 ◽  
Vol 10 (20) ◽  
pp. 7282
Author(s):  
Zicong Zhang ◽  
Junghun Lee ◽  
Gilsoo Jang

With the continuous development of power electronics technology, variable-speed offshore wind turbines that penetrated the grid system caused the problem of inertia reduction. This study investigates the frequency stability of synchronous, offshore wind-farm integration through a modular-multilevel-converter high-voltage direct-current (MMC–HVDC) transmission system. When full-scale converter wind turbines (type 4) penetrate the AC grid, the AC system debilitates, and it becomes difficult to maintain the AC system frequency stability. In this paper, we present an improved inertial-response-control method to solve this problem. The mathematical model of the synchronous generator is based on the swing equation and is theoretically derived by establishing a MMC–HVDC. Based on the above model, the inertia constant is analyzed using a model that integrates the MMC–HVDC and offshore synchronous generator. With the new improved control method, a more sensitive and accurate inertia index can be obtained using the formula related to the effective short-circuit ratio of the AC system. Moreover, it is advantageous to provide a more accurate inertial control evaluation for AC systems under various conditions. Furthermore, the impact of the MMC–HVDC on system safety is assessed based on the capacitor time constant. This simulation was implemented using the PSCAD/EMTDC platform.


Sign in / Sign up

Export Citation Format

Share Document