Implementation of Seamless Switching of Micro-Grid Operation Mode Based on Multi-Agent System

2013 ◽  
Vol 448-453 ◽  
pp. 2583-2589
Author(s):  
Zhi Wen Liu ◽  
Wen Bo Xia

Switching control of micro-grid operation modes belongs to short time scale control level, this paper proposes three-tier structure of micro-grid energy management system suitable for switching control of micro-grid operation modes on the basis of the analysis of micro-grid operation mode switching requirements for the control system, and builds micro-grid central control system based on multi-agent technology aiming at the coordinated control of micro-grid operation mode switching, which will effectively enhance the implementation effect of switching control strategy, and play important role in achieving the seamless switching control of micro-grid operation modes.

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7860
Author(s):  
Shumei Chi ◽  
Zhipeng Lv ◽  
Lan Liu ◽  
Yang Shan

For the distribution area with a high penetration rate of new energy, the traditional power supply system has some problems, such as a single form of power supply and low utilization of new energy. Because the multi-port energy router can realize the interconnection and complementation of multiple energy forms, it has become the key piece of equipment in the hybrid AC/DC distribution area. Nevertheless, restricted by the existing control strategy, the performance of the energy router in complex operation mode switching and coordinated control still needs to be further improved. To address this issue, the free switching control strategy is proposed in this paper. Firstly, the topology and model of the multi-port energy router are designed and established. Secondly, the operation mode of the system is analyzed, and the control strategy of each port is designed. Then, a reference power calculation method suitable for multi-mode operation is derived. Based on this, the control strategy does not need to be changed when operation modes are switched. Furthermore, the extended state observer is introduced to track and compensate for the new energy disturbance, which can improve the power quality of the system. Finally, the simulation and experimental results show that the proposed control strategy of the multi-port energy router can realize flexible and controllable power transmission among various modules in the distribution area and the free switching of multi-operation modes without changing the control strategy.


2013 ◽  
Vol 133 (9) ◽  
pp. 1652-1657 ◽  
Author(s):  
Takeshi Nagata ◽  
Kosuke Kato ◽  
Masahiro Utatani ◽  
Yuji Ueda ◽  
Kazuya Okamoto ◽  
...  

2014 ◽  
Vol 1044-1045 ◽  
pp. 677-680
Author(s):  
Gui Ying Liu ◽  
Yong Guang Gui ◽  
Shi Ping Su ◽  
Qian Luo ◽  
Jiang Wu ◽  
...  

For the different operation mode of micro-grid, an improved droop control method and a parallel inverter was proposed depending on the study of micro-grid inverter. Grid-connected interface contains a series inverter and a parallel inverter, and can be switched to select different work mode. The parallel inverter can eliminate harmonic, compensate three-phase imbalanced current to improve the quality of the power delivered to the utility grid. In islanding operation mode, the improved droop control strategy was applied, where an integral controller was introduced. So it can reduce the inverter output voltage amplitude. Thereby it can restrain circulation and realize the power of self-distribution. The effectiveness and feasibility are verified by the simulation result.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8296
Author(s):  
Yanliang Chen ◽  
Xiangyang Liu ◽  
Jianping Wang

Operation modes are an important topic in the research of Rotating Detonation Chamber (RDC) as it can affect the stability of RDC. However, they have not been discussed in detail due to the limitation of measurement means in experiments. The aim of this research is to investigate the mechanism of different operation modes by numerical simulation. In this paper, a numerical simulation for RDCs with separate injectors is carried out. Different operation modes and mode switching are analyzed. There is a series of reversed shock waves in the flow field. It was found that they have great effects on operation mode and mode switching in RDCs. A reversed shock wave can transit into a detonation wave after passing through isolated fresh gas region where fresh gas and burnt gas distribute alternatively. This shock-to-detonation transition (SDT) phenomenon will influence the ignition process, contra-rotating waves mode and mode switching in RDCs. SDT makes the number of detonation wave increases, resulting in multi-wave mode with one ignition. Moreover, quenching of detonation waves after collision and SDT after passing through isolated fresh gas region are the mechanism of contra-rotating waves mode in RDCs with separate injectors. In addition, when the inlet total temperature increases, a shock wave is easier to transit into a detonation wave. The distance that a shock wave travels before SDT decreases when temperature increases. This will result in mode switching. Therefore, SDT determines that there is a lower bound of detonation wave number.


Sign in / Sign up

Export Citation Format

Share Document