Analysis of Non-Fourier Thermal Behavior in Layered Tissue with Pulse Train Heating

2013 ◽  
Vol 479-480 ◽  
pp. 496-500
Author(s):  
Kuo Chi Liu ◽  
Cheng Chi Wang ◽  
Po Jen Cheng

This paper investigates the thermal behavior in laser-irradiated layered tissue, which was stratified into skin, fat, and muscle. A modified nonFourier equation of bio-heat transfer was developed based on the second-order Taylor expansion of dual-phase lag model. This equation is a fourth order partial differential equation and can be simplified as the bio-heat transfer equations derived from Pennes model, thermal wave model, and the linearized form of dual-phase lag model. The boundary conditions at the interface between two adjacent layers become complicated. There are mathematical difficulties in dealing with such a problem. A hybrid numerical scheme is extended to solve the present problem. The deviations of the results from the bio-heat transfer equations based on Pennes model, thermal wave model and dual-phase lag model are presented and discussed.

2011 ◽  
Vol 15 (suppl. 1) ◽  
pp. 61-67 ◽  
Author(s):  
Kuo-Chi Liu ◽  
Po-Jen Cheng ◽  
Yan-Nan Wang

This paper studies the effect of micro-structural interaction on bioheat transfer in skin, which was stratified into epidermis, dermis, and subcutaneous. A modified non-Fourier equation of bio-heat transfer was developed based on the second-order Taylor expansion of dual-phase-lag model and can be simplified as the bio-heat transfer equations derived from Pennes? model, thermal wave model, and the linearized form of dual-phase-lag model. It is a fourth order partial differential equation, and the boundary conditions at the interface between two adjacent layers become complicated. There are mathematical difficulties in dealing with such a problem. A hybrid numerical scheme is extended to solve the present problem. The numerical results are in a good agreement with the contents of open literature. It evidences the rationality and reliability of the present results.


1994 ◽  
Vol 116 (3) ◽  
pp. 526-535 ◽  
Author(s):  
M. N. O¨zis¸ik ◽  
D. Y. Tzou

This work contains three major components: a thorough review on the research emphasizing engineering applications of the thermal wave theory, special features in thermal wave propagation, and the thermal wave model in relation to the microscopic two-step model. For the sake of convenience, the research works are classified according to their individual emphases. Special features in thermal wave propagation include the sharp wavefront and rate effects, the thermal shock phenomenon, the thermal resonance phenomenon, and reflections and refractions of thermal waves across a material interface. By employing the dual-phase-lag concept, we show that the energy equation may be reduced to that governing the heat transport through the metal lattice in the microscopic two-step model. The dual-phase-lag concept can thus capture the microscopic mechanisms in some limiting cases.


Sign in / Sign up

Export Citation Format

Share Document