The Effect of the Structure of Collection Loop on Two-Phase Flow Field in Quenching Furnace

2011 ◽  
Vol 48-49 ◽  
pp. 1245-1249 ◽  
Author(s):  
Bao Dong Shao ◽  
He Ming Cheng ◽  
Jian Yun Li ◽  
Zi Liang Li ◽  
Li Jun Hou ◽  
...  

In order to analyses the effect of structure of collection loop on two-phase flow field in quenching furnace, the complex flow field in furnace for mixture of Nitrogen and spray water ejecting quenching under normal pressure and high velocity is numerically simulated with Mixture model of two-phase flow by CFD software FLUENT. Different inlet velocity, different volume percent of spray water, different velocity differences between Nitrogen and spray water, and different angle and dimension of collection loop affected on outlet velocity are analyzed. The research results show that the flow field is really complex, and around inner and outside canister and collection loop back flow exists. The angle of collection loop has less effect on outlet velocity, and the inner diameter of collection loop has more effect on outlet velocity. The simulation results show that the furnace can accelerate the flow of quenching media, which can cool specimen quickly.

2011 ◽  
Vol 418-420 ◽  
pp. 2006-2011
Author(s):  
Rui Zhang ◽  
Cheng Jian Sun ◽  
Yue Wang

CFD simulation and PIV test technology provide effective solution for revealing the complex flow of hydrodynamic coupling’s internal flow field. Some articles reported that the combination of CFD simulation and PIV test can be used for analyzing the internal flow field of coupling, and such analysis focuses on one-phase flow. However, most internal flow field of coupling are gas-fluid two-phase flow under the real operation conditions. In order to reflect the gas-fluid two-phase flow of coupling objectively, CFD three-dimensional numerical simulation is conducted under two typical operation conditions. In addition, modern two-dimensional PIV technology is used to test the two-phase flow. This method of combining experiments and simulation presents the characteristics of the flow field when charging ratios are different.


2008 ◽  
Vol 53-54 ◽  
pp. 369-373
Author(s):  
Rong Guo Hou ◽  
Chuan Zhen Huang ◽  
Y.S. Feng ◽  
Y.Y. Liu

The simulation of the gas-solid two phase flow inside the abrasive jet nozzle is studied by the computed dynamic software (CFD)-FLUENT, the velocity field of the two phase flow and the trajectory of the abrasive inside the nozzle are obtained. The Eulerian multiphase model and the DPM model have been used to compute the two-phase flow field. The simulation results express that the velocity of the jet is slow at the inlet, while it will be increased with the area of the section decreasing, the cone angle of the nozzle affects the flow field very much, the flow has low turbulence and the gradient of the velocity is small when the cone angle is small, while the velocity of the flow increased rapidly and the gradient of the velocity is big when the cone angle increasing. The simulation results also express that the arc radius affects the flow field greatly, the flow will move more smoothly when the arc radius is large. The pressure field of the wall expresses that the nozzle will wear rapidly at the corner of the nozzle, the reason is that the pressure is big or changed greatly, the fatigue wear and the blast wear will happen at those place.


2004 ◽  
Author(s):  
Gary Luke ◽  
Mark Eagar ◽  
Michael Sears ◽  
Scott Felt ◽  
Bob Prozan

2014 ◽  
Vol 541-542 ◽  
pp. 1288-1291
Author(s):  
Zhi Feng Dong ◽  
Quan Jin Kuang ◽  
Yong Zheng Gu ◽  
Rong Yao ◽  
Hong Wei Wang

Calculation fluid dynamics software Fluent was used to conduct three-dimensional numerical simulation on gas-liquid two-phase flow field in a wet flue gas desulfurization scrubber. The k-ε model and SIMPLE computing were adopted in the analysis. The numerical simulation results show that the different gas entrance angles lead to internal changes of gas-liquid two-phase flow field, which provides references for reasonable parameter design of entrance angle in the scrubber.


Author(s):  
William Dempster ◽  
Moftah Alshaikh

At present there are very few published works on prediction based methods to establish the forces that act on safety valves during two-phase operation. This means that the valve dynamics and resulting opening and closure are uncertain for a wide range of complex flow applications. This paper describes a study whereby a safety valve, primarily developed for the industrial refrigeration sector is investigated for a range of steady state high gas mass fraction inlet conditions, (gas mass quality 1-0.2) and the disc force characteristics measured for valve choked conditions. The highly compressible two phase flow processes are modelled using an Euler–Euler two fluid CFD approach and the results compared with the experiments. Results indicate that CFD approaches can reasonably capture the key processes but deficiencies exist due to the prediction of two phase built up backpressure in the valve. The methods and data trends are discussed to show the effectiveness of current modelling approaches.


2011 ◽  
Vol 130-134 ◽  
pp. 3644-3647
Author(s):  
Ding Feng ◽  
Si Huang ◽  
Yu Hui Guan ◽  
Wei Guo Ma

This work performs an oil-water two-phase flow simulation in a downhole Venturi meter to investigate the flow field and pressure characteristics with different flow and oil-water ratios. The relation between the pressure drop and the feed flow rate in the flowmeter is investigated for its optimal design.


2013 ◽  
Vol 712-715 ◽  
pp. 1253-1258
Author(s):  
Hai Feng Xue ◽  
Xiong Chen ◽  
Yong Ping Wang ◽  
Ya Zheng

The two-dimension axisymmetric and two-phase flow in a full-size solid rocket motor with submerged nozzle under high acceleration condition has been simulated with Euler-Lagrange model. Without acceleration and under high axial acceleration on particle trajectories, the influences of different particle diameters were analyzed. The difference between gas flow field and two-phase flow field is significant. The particle accumulation zone above the inner wall of chamber and nozzle is mainly concentrated in two regions. The axial acceleration will intensify the impaction to the end of the chamber. The accretion of the particle phase diameter will increase the inertia of the particle phase, which may cause the following property worse, and the particles can easily form a highly-concentrated aggregation flow.


Sign in / Sign up

Export Citation Format

Share Document