Analysis of Factors Influence on Void Underneath at Concrete Pavement Joints

2014 ◽  
Vol 488-489 ◽  
pp. 483-486
Author(s):  
Fang Ran Zhao ◽  
Jia Lin Cao ◽  
Ning Wang

Three-dimensional finite element analysis was made on the transverse joint stress state of the concrete pavement slab with void underneath using ANSYS. The transfer effect of dowel bar was discussed with aircraft loaded in the joints. The influence rule of load transfer effect under different dowel bar spacing and dowel bar cross section dimension was compared. Based on the results of finite element analysis, this paper had carried on the experimental study on stress-transferring effect on concrete pavement joints with different location of the dowel bar. The influencing factors of pavement slab transverse joint with void underneath and the resistance of pavement damage on the joint was analyzed. Theoretical analysis showed that in order to reinforce the resistance capacity of local cavity on concrete pavement joint, the largest spacing of transverse dowel bar set shall not be more than 45cm, and the main factors influencing the resistance void ability on the joint are top reaction modulus, coefficient of cavity, the concrete elastic modulus and coefficient of transverse reinforcement.

2014 ◽  
Vol 14 (05) ◽  
pp. 1450063 ◽  
Author(s):  
D. F. M. PAKVIS ◽  
D. JANSSEN ◽  
B. W. SCHREURS ◽  
N. VERDONSCHOT

Acetabular stress shielding may be a failure mechanism of acetabular constructs promoting osteolysis, aseptic loosening and failure. We used three-dimensional finite element analysis (FEA) to evaluate the effect of flexible sockets on acetabular stress shielding. The sockets were made of (1) full polyethylene (PE), (2) PE with a metal bearing and (3) a PE insert with a metal backing was used as a traditional stiff implant. We compared the strain energy density and interfacial micro-motions between bone and cementless sockets during walking. In our FEA model, the most elastic socket (case 1) showed the highest levels of micro-motion during walking (400 μm). The most rigid socket (case 3) showed smaller areas of high micro-motions. Assuming a threshold for ingrowth of 50 microns, the flexible cup showed an ingrowth area of almost 40%, whereas the other two cases showed stable areas covering 60% of the total bone–component interface. Furthermore, we found that the introduction of an implant generates a very different strain pattern directly around the implant as compared with the intact case, which has a horse-shoe shaped cartilage layer in the acetabulum. This difference was not affected much by the stiffness of the implant; a more flexible implant resulted in only slightly higher strain levels. Bone strains over 1.5 mm from the cup showed physiological values and were not affected by the stiffness of the implant. Hence, this study shows that the physiological strain patterns are not obtained in the direct periprosthetic bone, regardless of the stiffness of the material.


2010 ◽  
Vol 118-120 ◽  
pp. 147-150
Author(s):  
Da Zhao Yu ◽  
Yue Liang Chen ◽  
Yong Gao ◽  
Wen Lin Liu ◽  
Zhong Hu Jia

Three-dimensional finite element model of a cracked bolted joint has been developed in the non-linear finite element code MSC.Marc and attempts were made to validate it by comparing results with those of experiments and other finite element. Issues in modeling the contact between the joint parts, which affect the accuracy and efficiency of the model, were presented. Experimental measurements of load transfer were compared with results from finite element analysis. The results show that three-dimensional finite element model of cracked bolted joint can produce results in close agreement with experiment. Three-dimensional effects such as bolt titling, seconding and through-thickness variations in stress and strain are well represented by such models. Three-dimensional finite element analysis was also used to study the effects of hole mod and crack on the load transfer behaviour of single lap bolted joints. The results show that hole mode has big effect on load transfer of cracked bolted joint. In the whole progress of crack growth, the load transfer through bolt 1 decrease, and almost all of the load duduction of bolt 1 transfer into blot 2 rather than into bolt 3.


2013 ◽  
Vol 723 ◽  
pp. 245-257
Author(s):  
How Bing Sii ◽  
Gary W. Chai ◽  
Rudi van Staden ◽  
Hong Guan

Concrete pavements are usually selected by pavement engineers for roads subjected to heavy traffic loading and feature high maintenance and construction costs. As such, the structural behaviour of concrete pavements with doweled joints is evaluated herein using Finite Element Method. The pavement system is modelled using three-dimensional brick elements and five loading cases are applied to replicate realistic vehicular loadings approaching and leaving the joint. The structural behaviour of the pavement at the doweled joint is investigated for: (1) pavement with and without voids, and (2) different dowel bar spacing. The amount of load transfer was obtained from the shear force in the beam elements that simulate dowels. Results show that the voids underneath the joint causes an increase in the vertical displacement of the concrete slab and vertical stress at concrete/dowel bar interface which may result in crushing of the concrete and dowel loosening. Wider dowel spacings result in increased shear forces and the size of the region containing engaged dowels does not change significantly with dowel spacing, only effecting the distribution of shear forces. The study shows that the dowel bars perform effectively as a load transfer device in the concrete pavement system even under severe conditions.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Esteban Pérez-Pevida ◽  
Aritza Brizuela-Velasco ◽  
David Chávarri-Prado ◽  
Antonio Jiménez-Garrudo ◽  
Fernando Sánchez-Lasheras ◽  
...  

The objective of the present study is to evaluate how the elastic properties of the fabrication material of dental implants influence peri-implant bone load transfer in terms of the magnitude and distribution of stress and deformation. A three-dimensional (3D) finite element analysis was performed; the model used was a section of mandibular bone with a single implant containing a cemented ceramic-metal crown on a titanium abutment. The following three alloys were compared: rigid (Y-TZP), conventional (Ti-6Al-4V), and hyperelastic (Ti-Nb-Zr). A 150-N static load was tested on the central fossa at 6° relative to the axial axis of the implant. The results showed no differences in the distribution of stress and deformation of the bone for any of the three types of alloys studied, mainly being concentrated at the peri-implant cortical layer. However, there were differences found in the magnitude of the stress transferred to the supporting bone, with the most rigid alloy (Y-TZP) transferring the least stress and deformation to cortical bone. We conclude that there is an effect of the fabrication material of dental implants on the magnitude of the stress and deformation transferred to peri-implant bone.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Sign in / Sign up

Export Citation Format

Share Document