Synthesized ADRC for One-Level Inverted Pendulum System through Combination of Separating and Assembling

2014 ◽  
Vol 490-491 ◽  
pp. 794-797
Author(s):  
Wen Ping Li ◽  
Li Qiang Wu

Inverted pendulum system is the ideal study object of nonlinear system. The ADRC has good estimate for disturbances, strong robustness and using static decoupling instead of dynamical decoupling. The one-level inverted pendulum system can be regarded as composing of the pendulum angel system and the cart position system. The former is faster and the later is slower. The synthesized ADRC for one-level inverted pendulum system is built through combination of separating and assembling to reduce difficulty in optimizing ADRC parameters of the inverted pendulum system. The synthesized controller is simulated by Matlab under different parameters of the inverted pendulum. Simulation results show that the pendulum angle and the cart position are well controlled.

Author(s):  

A nonlinear system, which consists of an inverted pendulum mounted on a cart with an electric drive, is considered. A mathematical model is created, its analysis and modeling of the investigated two-dimensional system operation is carried out. Keywords mathematical model; inverted pendulum; system analysis; state space


2016 ◽  
Vol 40 (3) ◽  
pp. 812-818 ◽  
Author(s):  
Shuaipeng He ◽  
Chuanlin Zhang ◽  
Ning Yang ◽  
Hui Li

This paper investigates the problem of active disturbance attenuation control for a rotary inverted pendulum system. A nonlinear disturbance observer is first constructed to estimate the lumped disturbances, and then a feedback domination technique is integrated to handle the nonlinearities in a novel step-by-step way. Hence an exquisite composite controller can be constructed with strong robustness while the nominal control performance can be maintained. By utilizing a recursive stability analysis based on a Lyapunov function, the effectiveness of the proposed controller is assured. Numerical simulation results demonstrate the effectiveness of the proposed algorithm.


2015 ◽  
Vol 73 (6) ◽  
Author(s):  
Fairus, M. A. ◽  
Mohamed, Z. ◽  
Ahmad, M. N. ◽  
Loi, W. S.

This paper presents a multiobjective integral sliding mode controller (ISMC) for a rotary inverted pendulum system under the influence of varying load. Firstly, the nonlinear system is approximated to facilitate the desired control design via extended linearization and deterministic approach. By using both of these techniques, the nonlinear system is formulated into a nonlinear state-space representation where the uncertainties are retained in the model. Next, the design objectives are formulated into linear matrix inequalities (LMI) which are then solved efficiently through convex optimization algorithms. With proper selection variables, numbers of the decision variables for LMIs are reduced. Hence, it will reduce the numerical burden and believes the calculated values more viable in practice. Finally, simulation works are conducted and comparison is made between the proposed controller, such as normal ISMC and LQR. The simulation results illustrate the effectiveness of the proposed controller and the performance is evaluated through integral of absolute-value error (IAE) performance index. 


1991 ◽  
Vol 111 (3) ◽  
pp. 221-229 ◽  
Author(s):  
Motomiki Uchida ◽  
Yukihiro Toyoda ◽  
Yoshikuni Akiyama ◽  
Kazushi Nakano ◽  
Hideo Nakamura

2016 ◽  
Vol 9 (3) ◽  
pp. 167 ◽  
Author(s):  
Muhammad Sani Gaya ◽  
Anas Abubakar Bisu ◽  
Syed Najib Syed Salim ◽  
I. S. Madugu ◽  
L. A. Yusuf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document