A Method to Enhance the Fog Image Based on Dark Object Subtraction

2014 ◽  
Vol 543-547 ◽  
pp. 2484-2487
Author(s):  
Jing Zhang ◽  
Wei Dong ◽  
Jian Xin Wang ◽  
Xu Ning Liu

Aiming at the problem of poor image contrast and low visibility, a single image contrast enhancement method is put forward in this paper. The method is based on Dark-object subtraction technique, translating the fog degraded image from RGB color space to YIQ color space, and taking out the Y component. Then using the maximum entropy method to get the threshold value of image segmentation, we can put different portion of the image according to the different formula for image restoration. The processed image must be converted from YIQ color space to RGB color space In the back of the steps. Finally, the image needs a linear dynamic range adjustment to enhance the contrast and brightness. Experiments show that the method can effectively remove haze effect on the image. The dehazing effect of the processed image is obvious. The image becomes clear and bright, and the details is outstanding, which is convenient for observation and analysis.

2021 ◽  
Vol 13 (5) ◽  
pp. 939
Author(s):  
Yongan Xue ◽  
Jinling Zhao ◽  
Mingmei Zhang

To accurately extract cultivated land boundaries based on high-resolution remote sensing imagery, an improved watershed segmentation algorithm was proposed herein based on a combination of pre- and post-improvement procedures. Image contrast enhancement was used as the pre-improvement, while the color distance of the Commission Internationale de l´Eclairage (CIE) color space, including the Lab and Luv, was used as the regional similarity measure for region merging as the post-improvement. Furthermore, the area relative error criterion (δA), the pixel quantity error criterion (δP), and the consistency criterion (Khat) were used for evaluating the image segmentation accuracy. The region merging in Red–Green–Blue (RGB) color space was selected to compare the proposed algorithm by extracting cultivated land boundaries. The validation experiments were performed using a subset of Chinese Gaofen-2 (GF-2) remote sensing image with a coverage area of 0.12 km2. The results showed the following: (1) The contrast-enhanced image exhibited an obvious gain in terms of improving the image segmentation effect and time efficiency using the improved algorithm. The time efficiency increased by 10.31%, 60.00%, and 40.28%, respectively, in the RGB, Lab, and Luv color spaces. (2) The optimal segmentation and merging scale parameters in the RGB, Lab, and Luv color spaces were C for minimum areas of 2000, 1900, and 2000, and D for a color difference of 1000, 40, and 40. (3) The algorithm improved the time efficiency of cultivated land boundary extraction in the Lab and Luv color spaces by 35.16% and 29.58%, respectively, compared to the RGB color space. The extraction accuracy was compared to the RGB color space using the δA, δP, and Khat, that were improved by 76.92%, 62.01%, and 16.83%, respectively, in the Lab color space, while they were 55.79%, 49.67%, and 13.42% in the Luv color space. (4) Through the visual comparison, time efficiency, and segmentation accuracy, the comprehensive extraction effect using the proposed algorithm was obviously better than that of RGB color-based space algorithm. The established accuracy evaluation indicators were also proven to be consistent with the visual evaluation. (5) The proposed method has a satisfying transferability by a wider test area with a coverage area of 1 km2. In addition, the proposed method, based on the image contrast enhancement, was to perform the region merging in the CIE color space according to the simulated immersion watershed segmentation results. It is a useful attempt for the watershed segmentation algorithm to extract cultivated land boundaries, which provides a reference for enhancing the watershed algorithm.


2010 ◽  
Vol 31 (13) ◽  
pp. 1816-1824 ◽  
Author(s):  
Sara Hashemi ◽  
Soheila Kiani ◽  
Navid Noroozi ◽  
Mohsen Ebrahimi Moghaddam

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Haidi Ibrahim ◽  
Seng Chun Hoo

Digital image contrast enhancement methods that are based on histogram equalization technique are still useful for the use in consumer electronic products due to their simple implementation. However, almost all the suggested enhancement methods are using global processing technique, which does not emphasize local contents. Therefore, this paper proposes a new local image contrast enhancement method, based on histogram equalization technique, which not only enhances the contrast, but also increases the sharpness of the image. Besides, this method is also able to preserve the mean brightness of the image. In order to limit the noise amplification, this newly proposed method utilizes local mean-separation, and clipped histogram bins methodologies. Based on nine test color images and the benchmark with other three histogram equalization based methods, the proposed technique shows the best overall performance.


2019 ◽  
Vol 19 (04) ◽  
pp. 1950020
Author(s):  
Mitra Montazeri

In the image processing application, contrast enhancement is a major step. Conventional contrast enhancement methods such as Histogram Equalization (HE) do not have satisfactory results on many different low contrast images and they also cannot automatically handle different images. These problems result in specifying parameters manually to produce high contrast images. In this paper, an automatic image contrast enhancement on Memetic algorithm (MA) is proposed. In this study, simple exploiter is proposed to improve the current image contrast. The proposed method accomplishes multi goals of preserving brightness, retaining the shape features of the original histogram and controlling excessive enhancement rate, suiting for applications of consumer electronics. Simulation results shows that in terms of visual assessment, peak signal-to-noise (PSNR) and Absolute Mean Brightness Error (AMBE) the proposed method is better than the literature methods. It improves natural looking images specifically in images with high dynamic range and the output images were applicable for products of consumer electronic.


2013 ◽  
Vol 411-414 ◽  
pp. 1020-1024
Author(s):  
Hua Liang ◽  
Zhen Tao Zhou ◽  
Hao Feng ◽  
Li Jun Ding ◽  
Ju Ping Gu ◽  
...  

Color medical images are widely used in the field of medical diagnosis. Image enhancement is one of the most important pretreatment methods which can enhance the quality of images. In this paper, a novel color image enhancement method using Y-H model and wavelet homomorhpic filtering is put forward. The chromaticity numbers matrix and intensity numbers matrix of color images are get using Young-Helmholtz (YH) transform. The chromaticity numbers matrix remains unchanged. Wavelet homomorphic filtering method is used to process intensity numbers matrix . The enhanced intensity numbers matrix and formerly chromaticity numbers matrix are processed by Y-H inverse transformation and disply in RGB color space. The method put forward in the paper is successfully used in color medical image enhancement. Experimental results show that the method have characteristics of nondistortion, better visual effect.


Sign in / Sign up

Export Citation Format

Share Document