Study on an Acc/Dec Method Based on Moving Average Technology for CNC Machine Tools

2014 ◽  
Vol 556-562 ◽  
pp. 1413-1416 ◽  
Author(s):  
Tian Xiang Hu ◽  
Li Bing Zhang ◽  
Ting Wu ◽  
Feng Li Huang

To overcome some shortcomings of the linear Acc/Dec approach and the traditional S-curve Acc/Dec method, a novel velocity planning approach is proposed for CNC machine tools in this paper. The velocity planning model based on moving average technology is structured. The presented approach is used to make velocity planning for the CNC system. Comparing with the linear Acc/Dec algorithm, the presented method greatly improves motional smoothness of the linear Acc/Dec approach and reduces the complexity of the traditional S-curve Acc/Dec algorithm, which is more suitable for high-speed and high-precision CNC machine tools. The proposed approach is tested by simulation and experimentation. Simulation and experimental results have shown that the proposed method can significantly improve the motional smoothness and consumes less resource and shortens processing time for the CNC system.

2011 ◽  
Vol 105-107 ◽  
pp. 2217-2220
Author(s):  
Mu Lan Wang ◽  
Jian Min Zuo ◽  
Kun Liu ◽  
Xing Hua Zhu

In order to meet the development demands for high-speed and high-precision of Computer Numerical Control (CNC) machine tools, the equipped CNC systems begin to employ the technical route of software hardening. Making full use of the advanced performance of Large Scale Integrated Circuits (LSIC), this paper puts forward using Field Programmable Gates Array (FPGA) for the functional modules of CNC system, which is called Intelligent Software Hardening Chip (ISHC). The CNC system architecture with high performance is constructed based on the open system thought and ISHCs. The corresponding programs can be designed with Very high speed integrate circuit Hardware Description Language (VHDL) and downloaded into the FPGA. These hardening modules, including the arithmetic module, contour interpolation module, position control module and so on, demonstrate that the proposed schemes are reasonable and feasibility.


2013 ◽  
Vol 823 ◽  
pp. 149-152
Author(s):  
Qiu Jun Wu ◽  
Jian Jun Wang

The system configuration of CNC machine has nearly a thousand parameters to be set. These parameters are set correctly or not directly affect the use of CNC machine tools and their performance. It has been proved that the parameter setting about the CNC machine can bring much convenience to deal with troubleshooting and maintenance of CNC machine, reduce troubleshooting time and improve machine utilization. But for some parameters such as pitch compensation, position of reference points, these parameters settings are not in the same way in different machine. If parts of these parameters or all of these are lost, its unable to restore the precision of the CNC machine. It will bring great losses to the manufacturing enterprise. So the data of protection is particularly critical. This paper describes the function and principle about the machine data protection, and presents the method and step of data backup and recovery for the CNC machine with the typical CNC system, such as FANUC, Siemens and Huazhong CNC system.


2018 ◽  
Vol 224 ◽  
pp. 01020 ◽  
Author(s):  
Georgi M. Martinov ◽  
Akram Al Khoury ◽  
Ahed Issa

Nowadays, there is a big demand on using small sized CNC machine tools, which have low price tag, wide range of implementations, low manufacturing costs and can be used for educational purposes. These machines can achieve casual manufacturing routines, like milling and drilling in applications, where there is no need for high speed performances and super quality of products. In this work, we proposed a model of CNC for these machines and analysed its components and efficiency. The model consists of three main layers: CNC system (application layer), ARM based microcomputer as CAN master and controller (connecting layer) and Servo-Drive Step Motors (actuating layer).


Manufacturing ◽  
2003 ◽  
Author(s):  
Donald Esterling ◽  
F. Donald Caulfield ◽  
Aaron Kiefer ◽  
Gregory Buckner ◽  
Pavan Jaju

The frequency response function (FRF) of a CNC machine tool is composed of tool/toolholder/spindle dynamics, and plays an important role in determining the stability of high speed machining processes. This paper details the design, development and operational verification of a non-contacting, controllable, electromechanical actuator (EMA) for measuring the FRFs of tools mounted in CNC milling machines. Although standard modal testing methods are available and provide similarly accurate results, these test procedures are difficult to perform in machine shop environments and can require expensive equipment. The EMA developed as part of this research extends the capabilities of the NIST “best speeds device” to provide controllable, non-contacting excitation for modal tests on machine tools. This EMA device offers the advantages of being accurate, easy to use, and applicable to a wide variety of tools and operating conditions.


Sign in / Sign up

Export Citation Format

Share Document