Research of the Impact of Turbine Parameters on Low-Frequency Oscillation Based on Simulink

2014 ◽  
Vol 607 ◽  
pp. 556-560
Author(s):  
Ya Qing Zhu ◽  
Min Zhong ◽  
Feng Ping Pan ◽  
Jia Luo ◽  
Xi Zhang ◽  
...  

This paper analyzed the influence of various turbine parameters on the low-frequency oscillation using Simulink, including the oil motive slide valve time constant, the volume time constant, power grid damping factor, power grid power factor, self-balancing rotor coefficient etc. Meanwhile, comparing the influence of the pure speed regulator and power-frequency regulation on low-frequency oscillations, proven that power-frequency regulation will exacerbate the low frequency oscillation.

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 29
Author(s):  
Haoming Liu ◽  
Suxiang Yang ◽  
Xiaoling Yuan

It has become a basic requirement for wind turbines (WTs) to provide frequency regulation and inertia support. The influence of WTs on the low-frequency oscillation (LFO) of the system will change after adopting inertia control methods. This paper intends to investigate and compare in detail the IC effects on LFO characteristics in two systems with different structures. First, the mechanism of inertia control of doubly fed induction generator (DFIG)-based WTs is analyzed. Then, the small-signal analysis method and modal analysis method are used to study the influence of the inertia control on the LFO characteristics based on the two-machine infinite-bus system and the four-machine two-area system, respectively. The difference in impact rules of IC on LFO is compared in detail. Finally, considering that the inertia control might worsen the LFO in some systems, an improved inertia control strategy of DFIG-based WTs is proposed to suppress the LFO. The simulation results demonstrate that, in systems with different structures, the impact rules of the inertia control parameters on LFO are different. With the improved inertia control strategy, DFIG-based WTs can suppress the LFO of the system and provide inertia support for the system.


Author(s):  
Nguyen Hoang Mai ◽  
Tran van Dung

The low frequency oscillation in the electrical generator connect to power grid is an important problem to control systems, especially in the gas turbine generators with high speed. The oscillation makes affect to life time, finance of operating and effect of energy process. There are many cause of the oscillation in governor speed control of power plants. They use PSS to do damping low frequency oscillation in recently [11], [12], [13], [14], [22], [23]. So PSS usually does process with delay cycle time, therefore it makes effect isn’t good result. This paper presents a method using linear in the gas turbine generator, which connects to power grid. By observe affect action of local oscillation of the power, study finds key point of oscillation time. From that, we take out decision to do prediction of damping in system and supply signal in to PSS to reduce damaging of this oscillation. Simulation results explain difference action of the system with linear observer and system without linear observer.


Author(s):  
Mohammad M. Almomani ◽  
Abdullah Odienat ◽  
Seba F. Al-Gharaibeh ◽  
Khaled Alawasa

2012 ◽  
Vol 614-615 ◽  
pp. 875-879
Author(s):  
Jian Guo Zhu

This paper studies the effect of the soft feedback in hydro-turbine and its governor system on power system transient stability. Low frequency oscillation phenomenon in which the hydraulic turbine sets participate occurred on power system many times this year, which with no mechanism discovered. In this paper, we first study the effect of mechanical load moment output of the prime mover system on the mechanism of low frequency oscillations, then by analysis of small-signal stability on hydro-turbine and its governor system and simulation experiments on an two-generator power system using PSASP, we come to the conclusion that: If the soft feedback output values of hydro-turbine governor systems are set small in the power system, it will come to the unstable oscillation condition.


Sign in / Sign up

Export Citation Format

Share Document