Implementation of Software Radio Multi-Mode Modem on FPGA

2014 ◽  
Vol 608-609 ◽  
pp. 512-516
Author(s):  
Zhi Chao Yao

This paper introduces the software radio technology model and multi mode modem technology based on software radio, and analyzed and designed in detail the multi mode modem technology and current communication field, finally, and it is realize on the FPGA. Multi mode modem greatly improving communication system reliability, flexibility, increase system capacity, will have broad market prospect.

2014 ◽  
Vol 933 ◽  
pp. 693-697
Author(s):  
Hong Mei Shi

The main research content of this article is to design a direct sequence spread spectrum communication system based on software radio technology. In this paper, design of spread spectrum receiver system directly to intermediate frequency sampling signal processing, after internal processing directly output transmission baseband signal information.


Nanoscale ◽  
2016 ◽  
Vol 8 (4) ◽  
pp. 2227-2233 ◽  
Author(s):  
Shengtao Mei ◽  
Kun Huang ◽  
Hong Liu ◽  
Fei Qin ◽  
Muhammad Q. Mehmood ◽  
...  

The orbital angular momentum (OAM) of light can be taken as an independent and orthogonal degree of freedom for multiplexing in an optical communication system, potentially improving the system capacity to hundreds of Tbits per second.


2015 ◽  
Vol 740 ◽  
pp. 819-822
Author(s):  
Qing Shen ◽  
Tian Tian Guo ◽  
Yao Zhi Du

Device-to-Device (D2D) communication allows user devices in proximity to directly communicate with each other through reusing resources in cellular communication system. D2D improves the system capacity while it also raises some challenges on interference. This paper adopts reconfigurable antenna in D2D communication generating directional signal transmission between D2D pairs which mitigates the interference to other users. The simulations show that such scheme improve the system capacity compared to the traditional one.


Author(s):  
Ehsan Sheybani

Challenges involved in space communications across wireless channels call for new approaches to radio systems. Due to the growing need for frequency change in modern wireless systems, an adaptive radio system has the highest demand. Software-defined radios (SDR) offer this type of adaptivity as well as compatibility with other standard platforms such as USRP/GNU radio. Despite limitations of this approach due to hardware components, viable modeling and simulation as well as deployable systems are possible using this platform. This chapter presents a detailed implementation procedure for a USRP/GNU radio-based SDR communication system that can be used for practical experiments as well as an academic lab in this field. In this experiment the USRP has been configured to receive signal from a local radio station using the BasicRX model daughterboard. The programmable USRP executes Python block code implemented in the GNU Radio Companion (GRC) on Ubuntu OS.


Author(s):  
Nikhil Kumar Marriwala ◽  
Om Prakash Sahu ◽  
Anil Vohra

Software Defined Radio (SDR) systems are the ones which can adapt to the future-proof solution and it covers both existing and emerging standards. An SDR has to possess elements of reconfigurability, intelligence and software programmable hardware. The main interest in any communication group is the sure sending of signals of info from a transmitter to a receiver. The signals are transmitted via a guide who corrupts the signal. To ensure reliable communication forward error-correcting (FEC) codes are the main part of a communication system. This chapter will discuss an SDR system built using LabVIEW for a Generic Transceiver. This chapter has covered emerging software radio standards and the technologies being used to specify and support them.


Sign in / Sign up

Export Citation Format

Share Document