optical wireless communication
Recently Published Documents


TOTAL DOCUMENTS

770
(FIVE YEARS 277)

H-INDEX

35
(FIVE YEARS 7)

2022 ◽  
pp. 1-1
Author(s):  
Kapila W. S. Palitharathna ◽  
Himal A. Suraweera ◽  
Roshan I. Godaliyadda ◽  
Vijitha R. Herath ◽  
Zhiguo Ding

Author(s):  
Mustafa H. Ali ◽  
Tariq A. Hassan ◽  
Hiba A. Abu-Alsaad

In metropolitan communication infrastructures a revolutionary technique is emerge known as terrestrial optical wireless communication (OWC), which makes a high-rise building connection is possible. Even with this solution, there are many other problems like the influence of haze and fog in the propagation channel which obstruct and scatter OWC propagation light and consequently led to a big attenuation, due to propagate in temporal, angular and spatial of the light signal. Not to mention the minimum visibility that discourages the implementation of the pointing errors (PE) and tracking system. This present work aims to analyze the interrelation between multiple scattering (dense fog, heavy fog, light fog, heavy haze and light haze) and receiver PE under modified duo-binary return-to-zero (MDRZ) system. We found that PE caused by beam swag is the main controlling factor and industriously minimize the link margin, signal-to-noise ratio (SNR), and raise the bit error rate (BER) when there is an increasing the turbulence strength and the track length. We recommended to guarantee transmitter– receiver alignment by installing a variable field of view (FOV) receiver (a tracking system) to overcome the scattering impact of the fog that make render urban laser communication effective in the presence of PE.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0259649
Author(s):  
Abdouraouf Said Youssouf ◽  
Nurul Fadzlin Hasbullah ◽  
Norazlina Saidin ◽  
Mohamed Hadi Habaebi ◽  
Rajendran Parthiban ◽  
...  

This paper provides the details of a study on the effects of electron radiation on the Performance of Inters-satellite Optical Wireless Communication (IsOWC). Academia and industry focus on solutions that can improve performance and reduce the cost of IsWOC systems. Spacecraft, space stations, satellites, and astronauts are exposed to an increased level of radiation when in space, so it is essential to evaluate the risks and performance effects associated with extended radiation exposures in missions and space travel in general. This investigation focuses on LEO, especially in the near-equatorial radiation environment. Radiation experiments supported with simulations have made it possible to obtain and evaluate the electron radiation impact on optoelectronics at the device level and system level performances. The electron radiation has induced a system degradation of 70%. This result demonstrates the importance of such an investigation to predict and take necessary and suitable reliable quality service for future space missions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chahinaz Kandouci

Abstract In this work, we study the performance analysis of underwater optical wireless communication (UOWC) transmission link by incorporating optical code division multiple access (OCDMA) using pulse position modulation (PPM) to enhance the channel range and cardinality. Bit error rate (BER) variations are examined versus the range, modulation type (on–off keying (OOK), quadrature amplitude modulation (QAM), etc.), number of users as well as the channel attenuation caused by different water types. The power and transmitter inclination angle limitation, of the enhanced system, are also presented in order to determine the threshold for which the minimum BER 10−9 is achievable.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2731
Author(s):  
Hiwa Mahmoudi ◽  
Horst Zimmermann

This review concentrates on the state-of-the-art hardware-oriented receiver aspects for optical wireless communication (OWC), and points to the importance of BER performance analysis and modeling in presence of non-perpendicular light incidence. Receivers in OWC networks for 6G applications have to work for strongly different light incidence angles, to allow the formation of connections to locally separated transceivers without the need for rotation units and accurate adjustment. In turn, and in combination with fully integrated optical receivers, reduction of cost and increased comfort can be achieved. Fully integrated [bipolar] complementary metal-oxide-semiconductor ([Bi]CMOS) receivers with on-chip avalanche photodiodes (APDs) and single-photon avalanche diodes (SPADs) are presented and their performance in optical wireless communication is summarized. Impressive data rates up to 2 Gbit/s and free-space transmission distances up to 27 m at bit error ratios (BER) below 10−9 are reached with linear-mode APD receivers. The importance of optical interference in the isolation and passivation stack on top of the integrated photodiodes is illuminated. To be able to predict the dependence of the BER of single-photon avalanche diode (SPAD) receivers on the light incidence angle, a model, which includes a model for the photon detection probability and a standing-wave model for the isolation and passivation stack, is extended. The dependence of the BER on the light incidence angle onto the photodiodes is investigated by electromagnetic simulation for optical transmission of the layers on top of the photodiode, device simulation for the avalanche triggering probability and BER modeling with MATLAB. It is found that incidence angles up to 30° have moderate influence on the BER and that the BER degrades significantly for incidence angles larger than 50°.


Sign in / Sign up

Export Citation Format

Share Document