Moving Load Effect of a Truck on Concrete Pavements

2014 ◽  
Vol 617 ◽  
pp. 24-28
Author(s):  
Gabriela Lajčáková

Pavements represent the transport structures subjected to dynamic effect of moving vehicles. The real transport load is needed for the assessment of pavements. Such data can be obtained by numerical or experimental way. Various computing models can be used for the analysis of concrete pavements. Some possibilities are presented in this contribution.

2014 ◽  
Vol 617 ◽  
pp. 29-33 ◽  
Author(s):  
Jozef Melcer

Asphalt pavements are the transport structures subjected to dynamic effect of moving vehicles. Many effects influence the real values of vehicle tire forces. Road unevenness represents the most important factor influencing the magnitudes of tire forces. Such data can be obtained by numerical or experimental way. The paper deals with the numerical simulation of moving load effect on asphalt pavements and with numerical simulation of tire forces in relation to the road unevenness.


2017 ◽  
Vol 107 ◽  
pp. 00025 ◽  
Author(s):  
Daniela Kuchárová ◽  
Gabriela Lajčáková

1998 ◽  
Vol 25 (4) ◽  
pp. 631-639 ◽  
Author(s):  
G Thater ◽  
P Chang ◽  
D R Schelling ◽  
C C Fu

A methodology is developed to more accurately estimate the static response of bridges due to moving vehicles. The method can also be used to predict dynamic responses induced by moving vehicles using weigh-in-motion (WIM) techniques. Historically, WIM is a well-developed technology used in highway research, since it has the advantage of allowing for the stealthy automatic collection of weight data for heavy trucks. However, the lack of accuracy in determining the dynamic effect in bridges has limited the potential for its use in estimating the fatigue life of bridge structures and their components. The method developed herein amends the current WIM procedures by filtering the dynamic responses accurately using the Fast Fourier Transform (FFT). Example applications of the proposed method are shown by using computer-generated data. The method is fast and improves the predicted truck weight up to 5% of the actual weight, as compared to errors up to 10% using the current WIM methods.Key words: weigh-in-motion, digital filters, FFT, bridge dynamics, in-service testing.


2014 ◽  
Vol 651-653 ◽  
pp. 1840-1843
Author(s):  
Ying Ying Yin

To simulate snow falling scene dynamically, a method based on particle system is presented to simulate snow falling effects, it use calculated model to simulate the real effects of snow falling in the basis of snow natural characteristics. The simulation results have proven that the proposed method is more effective for simulating snow falling with realistic effects.


2019 ◽  
Vol 97 ◽  
pp. 05048
Author(s):  
Bakhtiyor Yuldashev ◽  
Sagdulla Abdukadirov

Wave processes in an elastic half-space covered with an elastic layer and (or) a thin elastic plate are considered in the paper. External load moves along the free surface. In the stationary statement, the waveguide properties of the system are determined. The multiple roots of the dispersion equations are revealed and the critical load velocities, leading to the initiation of resonant processes, are determined. In the case when the load moves with the velocity of the Rayleigh wave, additional resonances determined by the structure can be realized in the structure under consideration. It is revealed that Rayleigh resonance exists for long waves only. Numerical solutions are obtained that make it possible to trace the development of resonant excitations. The models of simple structures that have dispersive properties in the medium wave zone are analyzed, such as a thin plate on an elastic base; a model with an attached inertial medium. Analytical solutions have been obtained for these models. Computer simulations conducted simultaneously allow us to analyze the quantitative features of process throughout the entire time period of the load effect. The numerical and asymptotic solutions are compared.


2021 ◽  
Vol 16 (3) ◽  
pp. 131-158
Author(s):  
Qingqing Zhang ◽  
Wenju Zhao ◽  
Jian Zhang

Moving load identification has been researched with regard to the analysis of structural responses, taking into consideration that the structural responses would be affected by the axle parameters, which in its turn would complicate obtaining the values of moving vehicle loads. In this research, a method that identifies the loads of moving vehicles using the modified maximum strain value considering the long-gauge fiber optic strain responses is proposed. The method is based on the assumption that the modified maximum strain value caused only by the axle loads may be easily used to identify the load of moving vehicles by eliminating the influence of these axle parameters from the peak value, which is not limited to a specific type of bridges and can be applied in conditions, where there are multiple moving vehicles on the bridge. Numerical simulations demonstrate that the gross vehicle weights (GVWs) and axle weights are estimated with high accuracy under complex vehicle loads. The effectiveness of the proposed method was verified through field testing of a continuous girder bridge. The identified axle weights and gross vehicle weights are comparable with the static measurements obtained by the static weighing.


Sign in / Sign up

Export Citation Format

Share Document