Oscillation of Solutions to Second Order Stochastic Difference Equations

2014 ◽  
Vol 666 ◽  
pp. 282-287
Author(s):  
Jun Shan Zeng ◽  
Ya Bo Wang ◽  
Su Fang Han

In this paper, we provide the criterion of existence of oscillation solutions to the following second order stochastic difference equation (please see in body part)

Author(s):  
Lars Peter Hansen ◽  
Thomas J. Sargent

This chapter describes the vector first-order linear stochastic difference equation. It is first used to represent information flowing to economic agents, then again to represent competitive equilibria. The vector first-order linear stochastic difference equation is associated with a tidy theory of prediction and a host of procedures for econometric application. Ease of analysis has prompted the adoption of economic specifications that cause competitive equilibria to have representations as vector first-order linear stochastic difference equations. Because it expresses next period's vector of state variables as a linear function of this period's state vector and a vector of random disturbances, a vector first-order vector stochastic difference equation is recursive. Disturbances that form a “martingale difference sequence” are basic building blocks used to construct time series. Martingale difference sequences are easy to forecast, a fact that delivers convenient recursive formulas for optimal predictions of time series.


2020 ◽  
Vol 7 (1) ◽  
pp. 72-80
Author(s):  
Paul H. Bezandry

AbstractThe paper studies the existence of almost periodic solutions to some nonautonomous higher-order stochastic difference equation of the form:X\left( {t + n} \right) + \sum\limits_{r = 1}^{n - 1} {{A_r}\left( t \right)X\left( {t + r} \right) + {A_0}\left( t \right)X\left( t \right) = f\left( {t,X\left( t \right)} \right),}n ∈ 𝕑, by means of discrete dichotomy techniques.


2005 ◽  
Vol 05 (02) ◽  
pp. 175-188 ◽  
Author(s):  
LEONID SHAIKHET

The general method of Lyapunov functionals construction has been developed during the last decade for stability investigations of stochastic differential equations with after-effect and stochastic difference equations. After some modification of the basic Lyapunov type theorem this method was successfully used also for difference Volterra equations with continuous time. The latter often appear as useful mathematical models. Here this method is used for a stability investigation of some nonlinear stochastic difference equation with continuous time.


Author(s):  
Robert Stegliński

AbstractIn this work, we establish optimal Lyapunov-type inequalities for the second-order difference equation with p-Laplacian $$\begin{aligned} \Delta (\left| \Delta u(k-1)\right| ^{p-2}\Delta u(k-1))+a(k)\left| u(k)\right| ^{p-2}u(k)=0 \end{aligned}$$ Δ ( Δ u ( k - 1 ) p - 2 Δ u ( k - 1 ) ) + a ( k ) u ( k ) p - 2 u ( k ) = 0 with Dirichlet, Neumann, mixed, periodic and anti-periodic boundary conditions.


2008 ◽  
Vol 2008 ◽  
pp. 1-10 ◽  
Author(s):  
Tim Blackwell ◽  
Dan Bratton

The tail of the particle swarm optimisation (PSO) position distribution at stagnation is shown to be describable by a power law. This tail fattening is attributed to particle bursting on all length scales. The origin of the power law is concluded to lie in multiplicative randomness, previously encountered in the study of first-order stochastic difference equations, and generalised here to second-order equations. It is argued that recombinant PSO, a competitive PSO variant without multiplicative randomness, does not experience tail fattening at stagnation.


2015 ◽  
Vol 46 (4) ◽  
pp. 441-451 ◽  
Author(s):  
Ethiraju Thandapani ◽  
Devarajulu Seghar ◽  
Sandra Pinelas

In this paper we obtain some new oscillation criteria for the neutral difference equation \begin{equation*} \Delta \Big(a_n (\Delta (x_n-p_n x_{n-k}))\Big)+q_n f(x_{n-l})=0 \end{equation*} where $0\leq p_n\leq p0$ and $l$ and $k$ are positive integers. Examples are presented to illustrate the main results. The results obtained in this paper improve and complement to the existing results.


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1176 ◽  
Author(s):  
Jorge Arvesú ◽  
Anier Soria-Lorente

A set of second order holonomic difference equations was deduced from a set of simultaneous rational approximation problems. Some orthogonal forms involved in the approximation were used to compute the Casorati determinants for its linearly independent solutions. These solutions constitute the numerator and denominator sequences of rational approximants to ζ ( 3 ) . A correspondence from the set of parameters involved in the holonomic difference equation to the set of holonomic bi-sequences formed by these numerators and denominators appears. Infinitely many rational approximants can be generated.


Sign in / Sign up

Export Citation Format

Share Document