Research and Design of Permanent Magnet Synchronous Motor Vector Control for Electric Vehicle

2014 ◽  
Vol 668-669 ◽  
pp. 629-632 ◽  
Author(s):  
Zhi Yu Huang ◽  
Jun Bing Chen

As the electric vehicles usually run under complex conditions of city road, there always exists parameter perturbation of motor, which will affect the vehicle performance. To solve the problem, an improved sliding mode variable structure control (SMC) method which combines continuous function and reaching law has been proposed in this paper. Then the improved vector control algorithm’s codes are generated automatically in the MMC (Model-based Motor Control) platform. The results show that the improved SMC algorithm has small chattering and strong robustness to the parameter perturbation and the external disturbances.

2014 ◽  
Vol 596 ◽  
pp. 584-589
Author(s):  
Xi Jie Yin ◽  
Jian Guo Xu

The sliding mode variable structure control method for brushless DC motors with uncertain external disturbances and unknown loads is studied. A neural sliding mode control scheme is proposed for reducing chattering of sliding mode control. A global sliding mode manifold is designed in this approach, which guarantees that the system states can be on the sliding mode manifold at initial time and the system robustness is increased. A radial basis function neural network (RBFNN) is applied to learn the maximum of unknown loads and external disturbances. Based on the neural networks, the switching control parameters of sliding mode control can be adaptively adjusted with uncertain external disturbances and unknown loads. Therefore, the chattering of the sliding mode controller is reduced. Simulation results proved that this control scheme is valid.


2014 ◽  
Vol 668-669 ◽  
pp. 637-640
Author(s):  
Zhi Yu Huang ◽  
Xi Zheng

In the foundation of the realization of sensorless control of permanent magnet synchronous motor(PMSM) based on the traditional sliding mode observer, the paper focuses on the research on the chattering impacts on the estimation of rotor position and speed, which are caused by the sliding mode variable structure control. To weaken the chattering, the paper proposes two kinds of methods. First, the paper designs the saturation function with boundary layer thickness variable instead of sign function in the traditional sliding mode observer. Meanwhile, let the phase-locked loop (PLL) combine to the sliding mode observer, and construct the rotor position signal detection unit. Finally, the paper verifies the correctness and effectiveness of the proposed methods through the theoretical analysis and simulation.


2013 ◽  
Vol 711 ◽  
pp. 426-431
Author(s):  
Chun Yan Cui ◽  
Kui Li ◽  
Bing Li ◽  
Chao Fu ◽  
Jia Guo

In this paper, according to the induction motor in rotating coordinate system mathematical model, established based on rotor flux oriented vector control model and realized flux linkage and torque decoupling. In order to solve the current high coupling, designed the sliding mode variable structure control algorithm of current controller. Based on the sliding mode variable structure control algorithm achievable conditions and Lyapunov stability theorem, proved that the sliding mode of accessibility and stability, determined the sliding model parameters. The simulation results show that the sliding mode variable structure control of induction motor vector control system, can reduce the torque ripple and the speed overshoot and improve the system parameter perturbation and external disturbance signal robustness.


Sign in / Sign up

Export Citation Format

Share Document