Numerical Simulation of Dendrite Growth of Binary Alloy Using Phase-Field Method

2014 ◽  
Vol 716-717 ◽  
pp. 133-136
Author(s):  
Fang Hui Liu ◽  
Ming Gao

In order to study the growth process and morphology of dendrite directly, a phase field model of binary alloy was established. In this model the order parameter equation was coupled with the temperature field and the solute field. The growing processes and morphology of dendrite were simulated by using this phase field model. Through analyzing the results, we discussed the effects of anisotropic strength and temperature gradient on dendrite morphology. The results shows that with the increasing of anisotropic strength, the dendrite growth rate of the dendrite will increase and the secondary branches appear more clearly. Besides, the temperature gradient has influence on the appearance of secondary arms during the dendrite growing. With the increase of temperature gradient, the size of secondary dendrite arms increase.

2013 ◽  
Vol 749 ◽  
pp. 660-667
Author(s):  
Yu Hong Zhao ◽  
Wei Jin Liu ◽  
Hua Hou ◽  
Yu Hui Zhao

The Phase Field model of solidification processes was carried out coupled with temperature field model. The influence of interface atomic time on dendrite growth morphology in undercooled melt was simulated with pure nickel. The experimental results show that when the interface atomic motion time parameter is minor, the liquid-solid interfaces were unstable, disturbance can be amplified easily so the complicated side branches will grow, and the disturbance speed up the dendrite growth. With the increase of , the liquid-solid interfaces become more stable and finally the smooth dendrite morphology can be obtained.


2013 ◽  
Vol 470 ◽  
pp. 100-103
Author(s):  
Dong Sheng Chen ◽  
Ming Chen ◽  
Rui Chang Wang

PFM (phase field method) was employed to study microstructure evolution, and considering the effect of solute concentration to the undercooling, we developed a phase field model for binary alloy on the basis of pure substance model. In the paper, the temperature field and solute field were coupled together in the phase field model to calculate the crystal growth of magnesium alloy in directional solidification. The simulation results showed a non-planar crystal growth of planar to cellular to columnar dendrite, the comparison of different dendrite patterns were carried out in the numerical simulation, and with the increasing of the anisotropy, the second dendrite arms became more developed.


2013 ◽  
Vol 774-776 ◽  
pp. 703-706
Author(s):  
Ming Chen ◽  
Yu Jiang ◽  
Wen Long Sun ◽  
Xiao Dong Hu ◽  
Chun Li Liu

Phase field method (PFM) offers the prospect of carrying out realistic numerical calculation on dendrite growth in metallic systems. The dendritic growth process of multiple dendrites and direcitonal solidification during isothermal solidifications in a Fe-0.5mole%C binary alloy were simulated using phase field model. Competitive growth of multiple equiaxed dendrites were simulated, and the effect of anisotropy on the solute segregation and microstructural dedritic growth pattern in directional solidification process was studied in the paper. The simulation results showed the impingement of arbitrarily oriented grains, and the grains began to impinge and coalesce the adjacent grains with time going on, which made the dendrite growth inhibited obviously. In the directional solidification, the maximum concentration gradient showed in the dendrite tip, and highest solute concentration existed at the bottom of the dendrites. With the increasing of the anisotropy, dendrite tip radius became smaller, and the crystal structure is more uniform and dense.


2011 ◽  
Vol 415-417 ◽  
pp. 1482-1485
Author(s):  
Chuang Gao Huang ◽  
Ying Jun Gao ◽  
Li Lin Huang ◽  
Jun Long Tian

The second phase nucleation and precipitation around the edge dislocation are studied using phase-field method. A new free energy function is established. The simulation results are in good agreement with that of theory of dislocation and theory of non-uniform nucleation.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Qiao Wang ◽  
Geng Zhang ◽  
Yajie Li ◽  
Zijian Hong ◽  
Da Wang ◽  
...  

AbstractRechargeable batteries have a profound impact on our daily life so that it is urgent to capture the physical and chemical fundamentals affecting the operation and lifetime. The phase-field method is a powerful computational approach to describe and predict the evolution of mesoscale microstructures, which can help to understand the dynamic behavior of the material systems. In this review, we briefly introduce the theoretical framework of the phase-field model and its application in electrochemical systems, summarize the existing phase-field simulations in rechargeable batteries, and provide improvement, development, and problems to be considered of the future phase-field simulation in rechargeable batteries.


2002 ◽  
Vol 753 ◽  
Author(s):  
Chen Shen ◽  
Michael J. Mills ◽  
Yunzhi Wang

ABSTRACTWe incorporate γ-surface data of both γ and γ′ phases from ab initio calculations into the phase field model to study dislocation dissociation and interaction with γ′ particles in Ni-based superalloys. Through three examples we demonstrate the unique capabilities of the model in characterizing the core structure of a dissociated superdislocation in γ′ phase, the creation and annihilation of planar defects such as CSF and APB caused by dislocation cutting through the γ′ phase and the interplay between the cutting and looping mechanisms.


2013 ◽  
Vol 1524 ◽  
Author(s):  
Jordan J. Cox ◽  
Eric R. Homer ◽  
Veena Tikare

ABSTRACTA recently introduced hybrid Potts-phase field method has demonstrated the ability to evolve microstructures in conjunction with compositional fields tied to different phases. In this approach, Monte Carlo Potts methods are used to evolve the microstructure while phase field methods are used to evolve the composition, and the two fields are coupled through free energy functionals. Recent developments of the model allow different multi-component alloy systems to be simulated by using thermodynamic databases and kinetic quantities to dictate the behavior. An example of the method using the aluminum-silicon binary system is demonstrated.


2012 ◽  
Vol 9 (9) ◽  
pp. 1495-1499 ◽  
Author(s):  
Rongzhen Xiao ◽  
Zhiping Wang ◽  
Changsheng Zhu ◽  
Li Feng

2011 ◽  
Vol 704-705 ◽  
pp. 1338-1348
Author(s):  
Hua Hou ◽  
Yu Hong Zhao

The dendrite growth process was simulated with the Phase Field Model coupled with the fluctuation. The effect of fluctuation intensity on the dendrite morphology and the thermal fluctuation together with the phase field fluctuation on the forming of side branches were investigated. Result shows that with the decrease of thermal fluctuation amplitude, the furcation of dendrites tip also decreased, transverse dendrites become stronger and lengthways dendrites becomes degenerate, Doublon structure disappeared, finally a quite symmetrical dendrites structure formed. Thermal fluctuation can result in the unsteadiness of dendrites side branches, it is also the main reason of forming side branches, yet phase field fluctuation has little contribution to the side branches, it is usually ignored in the calculation; when the value ofFuis appropriate, the thermal noise can lead the side branches, but cannot change the steady behavior of the dendrites’ tip.


2019 ◽  
Vol 944 ◽  
pp. 788-794
Author(s):  
Ping Ping Wu ◽  
Guan Wang ◽  
Shu Min Pang

Heteroepitaxially grown multilayered thin film structures have been attracted of great interest due to its potential applications in photovoltaic/light emitting/electronics devices. The thin film morphology plays an important role in enhancing its related physical properties. It is not easy to simulate the multi-layered thin film structures due to the influence of the interface/surface fluctuation. However, the phase field method, based on thermodynamics and Cahn-Hilliard diffusion model, can predict the thin film morphologies without tracking the interfaces. In this paper, a new phase field model was developed for predicting multi-layer structures with multi-order parameters. The morphologies with strain distributions of the quantum wells, quantum dots and buffer layers structures were investigated in the current study. We found that the strain distribution has a strong effect on the suface/interface morphologies in the multilayered structures. Some simulation results are consistent with experimental observations.


Sign in / Sign up

Export Citation Format

Share Document