The Uneven Settlement Cause and Settlement Prediction of Xi Ying Sluice

2015 ◽  
Vol 733 ◽  
pp. 116-119
Author(s):  
Qing Yuan Zhu ◽  
Li Ting Qiu ◽  
Ting Jiang

Xi Ying sluice built in Xishi River, Changzhou City, is a single span sluice with width of 6m. The chamber is pier wall structure of depressed reinforced concrete floor, when the chamber had a filling and discharging water during construction period, we found that the chamber appeared large uneven subsidence. According to the design, construction and other specific circumstances of Xi Ying sluice, by using three-dimensional finite element method to calculate and analyzed the settlement of the sluice, we studied on the genesis of the uneven settlement and predicted the settlement after the running. Analysis shows that the chamber of the uneven settlement is due to the jacking effect of concrete pile. The settlement has been basically completed caused by chamber weight, there will not be a substantial settlement; In the case of blocking water during operation period, chamber’s settlement increment outside the river side and inside the river side are respectively 0.3mm and 0.4mm; through processing, the settlement of chamber won’t affect the normal operation of sluice.

2015 ◽  
Vol 45 (3) ◽  
pp. 37-52
Author(s):  
Shuxia Yuan ◽  
Youyun Zhang ◽  
Yongsheng Zhu

Abstract The objective of this paper is to investigate the influence of transition structure between curvic teeth and disk on stress distribution of curvic couplings, and provide data to help improving the design of curvic couplings. In this work, the three-dimensional finite element method was used, and Augmented Lagrange Algorithm was adopted to the contact algorithm during the analysis. According to the results of this paper, designing thin-wall structure reasonably can avoid detaching of contact interface at external diameter during preload process; reduce stress fluctuation of curvic teeth caused by circumferential bolts structure; and balance stress difference of each contact pair caused by different disk quality under the action of the centrifugal force.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


1992 ◽  
Vol 20 (1) ◽  
pp. 33-56 ◽  
Author(s):  
L. O. Faria ◽  
J. T. Oden ◽  
B. Yavari ◽  
W. W. Tworzydlo ◽  
J. M. Bass ◽  
...  

Abstract Recent advances in the development of a general three-dimensional finite element methodology for modeling large deformation steady state behavior of tire structures is presented. The new developments outlined here include the extension of the material modeling capabilities to include viscoelastic materials and a generalization of the formulation of the rolling contact problem to include special nonlinear constraints. These constraints include normal contact load, applied torque, and constant pressure-volume. Several new test problems and examples of tire analysis are presented.


Sign in / Sign up

Export Citation Format

Share Document