Nonlinear Seismic Response Analysis of Cable-Stayed Bridge under Uniform and Traveling-Wave Excitations

2015 ◽  
Vol 744-746 ◽  
pp. 793-798
Author(s):  
Kai Yan Xu

The finite element method model of a 670.56m span cable-stayed bridge was established and the dynamic characteristic and nonlinear earthquake-responses of it under uniform and traveling-wave excitations were systematic studied. Results show that: 1) its former 10 rank frequency are located very dense which shows that more modes shape should be considered when dealing with the dynamic analysis. 2) The traveling-wave excitation has greater effect on long-span cable-stayed bridge, especially on the more flexible component and great attention should be paid to the design of such kind of bridge.

2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Jin Zhang ◽  
Ke-jian Chen ◽  
Neng-pan Ju ◽  
Shi-xiong Zheng ◽  
Hong-yu Jia ◽  
...  

To study the nonlinear seismic behavior and seismic resistance of the long-span cable-stayed bridges subjected to earthquakes, the multidimensional and multisupported artificial ground motions are synthesized first based on the in situ site conditions of the bridge considering the coherent and traveling wave effects. Then, considering the material nonlinearity of the cable-stayed bridge, a 3D finite element model is established based on the OpenSees platform, and the nonlinear seismic response analysis of the bridge is carried out under the synthetic artificial ground motions. The nonlinear seismic response of main bridge components such as piers, towers, bearings, and cables is analyzed, and key conclusions and observations are drawn.


2011 ◽  
Vol 368-373 ◽  
pp. 690-694
Author(s):  
Kai Yan Xu ◽  
De Min Wei ◽  
Can Liu

Earthquake is a kind of natural disaster which is difficult to predict and the damage degree is very great, occurrence of the strong motion often leads to the tremendous life and property loss. Bridge is an important part of the lifeline engineering, it is very necessary to conduct the comprehensive and systemic investigation on the bridge aseismic. In this paper, a 670.56m span cable-stayed bridge was chosen as object of study, the FEM model of it was established, and the dynamic characteristic and nonlinear seismic responses under uniform and traveling-wave excitations were systematic studied. The results show that: 1) the mode of connection between the pier, tower and the beam is crucial to the dynamic response of bridge which should be simulated correctly. 2) Its former 10 rank frequency are located very close which shows that more mode shape should be taken into account when dealing with the dynamic analysis. 3) The traveling-wave excitation has appreciable impact on such kind of cable-stayed bridge, especially on the more flexible component, which should be paid much attention to while design.


2014 ◽  
Vol 556-562 ◽  
pp. 984-987
Author(s):  
Xue Mei Li

Computed Ruiz and Penzien power spectrum model of Sutong bridge site, used the multi-point excitation response analysis method to long span bridge, the additional mass method considering the fluid effect and equivalent viscoelastic boundary method considering the soil effect. As a result, for the pile - soil - water - structure model, the internal force of main tower of Sutong bridge response decreased tendency, the peak of tower internal force response had certain phase difference effect. In addition, different structure types of the bridge by the traveling wave effect the influence degree is different, some parts of the reaction may be increased ,the other may be reduced, so analyzing response of the long span cable-stayed bridge must be consider the traveling wave, the coherent and the local effect.


2013 ◽  
Vol 639-640 ◽  
pp. 911-916
Author(s):  
Cui Xiang Liang

This paper is concerned with the dynamical behavior of a chaotic system which is a model for seismic response of structures. The local bifurcation of the non-hyperbolic equilibrium point of the chaotic system is investigated by using center manifold method. The transcritical bifurcation is analyzed in detail. Based on numerical simulations, spectrums of maximal Lyapunov exponent and the bifurcation diagrams are presented for the dynamic analysis. The method proposed can be used as a reference of nonlinear seismic response analysis.


Sign in / Sign up

Export Citation Format

Share Document