Simulation of Voltage on Stator Winding Terminals of Induction Motor with Impaired Short-Circuit Winding of Rotor

2015 ◽  
Vol 792 ◽  
pp. 155-159
Author(s):  
Alexander Novozhilov ◽  
Alexandra Potapenko

The paper is presented the method of simulation of voltage on the stator winding terminals of induction motor with impaired short-circuit winding of rotor in the running-out mode. This method allows to simulate processes in induction motors with precision to satisfy the requirements of protection equipment.

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8523
Author(s):  
Marcin Tomczyk ◽  
Ryszard Mielnik ◽  
Anna Plichta ◽  
Iwona Gołdasz ◽  
Maciej Sułowicz

This paper presents a new method of inter-turn short-circuit detection in cage induction motors. The method is based on experimental data recorded during load changes. Measured signals were analyzed using a genetic algorithm. This algorithm was next used in the diagnostics procedure. The correctness of fault detection was verified during experimental tests for various configurations of inter-turn short-circuits. The tests were run for several relevant diagnostic signals that contain symptoms of faults in an examined cage induction motor. The proposed algorithm of inter-turn short-circuit detection for various levels of winding damage and for various loads of the examined motor allows one to state the usefulness of this diagnostic method in normal industry conditions of motor exploitation.


2021 ◽  
Vol 5 (5 (113)) ◽  
pp. 21-29
Author(s):  
Oleg Gubarevych ◽  
Sergey Goolak ◽  
Olena Daki ◽  
Yuriy Yakusevych

This paper has proposed and substantiated the application of an additional diagnostic parameter for assessing the state of stator windings of induction motors during operation. The dependences of the values of phase shifts between phase currents and phase voltages have been obtained. These dependences showed that when an inter-turn short circuit occurs in the stator windings, the phase shifts are the same for all phases of the motor. That has made it possible to obtain the dependence of the change in phase shift on the change in the engine shaft rotation frequency. This study's result has established the dependence of the rates of change of the phase angle on the engine shaft rotation frequency for both one and two damaged phases with varying degrees of damage. When analyzing these dependences, it was found that with an increase in the number of damaged phases of the electric motor, the linear section of the dependences decreases. In addition, with an increase in the degree of phase damage, the angle of inclination of the linear sections of the characteristics decreases. That has made it possible to determine an additional parameter for diagnosing the place and degree of an inter-turn short circuit of the windings in an induction motor with a squirrel-cage rotor. The values of the additional parameter, termed by this paper's authors as a "phase criterion" can be used to assess the condition and degree of damage to the stator winding of induction motors. The values of the phase criteria for various types of damage were: when phase A is damaged by 90 %, ξ=0.634, (deg)2/(rpm)2; when phase A is damaged by 80 %, ξ=0.393, (deg)2/(rpm)2; when phase A is damaged by 80 % and phase B is damaged by 90 %, ξ=0.25, (deg)2/(rpm)2; when phase A is damaged by 80 % and phase B is damaged by 90 %, ξ=0.173, (deg)2/(rpm)2. The results of this research could be used to select an effective method for diagnosing an inter-turn short circuit in the stator winding when building a diagnostic system for induction motors as part of drives of transport equipment


Author(s):  
Bima Rachmat Ah Ro Ufun ◽  
Iradiratu Diah Prahmana Karyatanti ◽  
Belly Yan Dewantara

In applications in the industrial world, the use of induction motors has been widely used in operation because induction motors have many advantages, although they have many advantages, induction motors themselves also have disadvantages, namely having high starting currents. In many cases the damage to the induction motor, the damage to the stator due to a short circuit, is a frequent failure, this damage can cause considerable losses because the motor can stop operation So this research will discuss about the detection of short circuit faults in the stator winding through leaky flux using a flux sensor that is placed outside the motor and placed radially and using the Fast Fourier Transform (FFT) method. Damage to the short circuit is done by reconstructing the stator winding of the induction motor. There are two variations of short circuit damage, namely short circuit winding 1 to winding 3 and short circuit winding 2 to winding 10 on an induction motor. The short circuit data is then processed using the Fast Fourier Transform method which produces data in the form of voltage to frequency. The results of the percentage of success of short circuit fault detection seen from the loaders have an average percentage of 50%, at no load conditions can detect short circuit faults by 100%. In conditions of short circuit interruption 1-3 has a success percentage of 30% and short circuit fault 2-10 by 70%. The existence of this system is expected to be able to anticipate any damage that can cause considerable and fatal losses.


Author(s):  
Renato Carlson ◽  
Cláudia A. da Silva ◽  
Nelson Sadowski ◽  
Michel Lajoie-Mazenc

This work uses a methodology based on 2D-Finite Element Method (FEM) and on the Circuits Theory (Independent Currents Method) to analyze the inter-bar currents on the rotor of cage induction motors. The Multi-Slice Technique is used to consider the skewing effect. Three conditions are considered: one inter-bar resistance, two inter-bar resistances and three inter-bar resistances. The results show the distribution of currents in the rotor bars, short-circuit rings and transversal resistances at a given time. The fundamental component of the inter-bar and surrounding bar currents are shown to help understanding the phenomenon.


Sign in / Sign up

Export Citation Format

Share Document