First-Principles Study of Tuning the Band Gap with Cr Doped BN Sheets

2015 ◽  
Vol 799-800 ◽  
pp. 171-174 ◽  
Author(s):  
Sheng Qian Ma ◽  
Feng Li

It is all known that the BN sheet is a nonmagnetic wide-band-gap semiconductor. Using Density Function Theory (DFT), the lattice parameters of Cr doped BN sheets were optimized, which were still kept on 2D planar geometry, and the band gap was studied. The simulation results show that the band gap is very easy to be tuned by Cr doped BN sheet, which is more stable structure. So Cr doped BN sheet is a promising material in modulating the band gap and through tuning the band gap it can be a highly efficient photocatalytic material et al. Because Cr is poisonous and harmful substance, it does harm to people’s health and environmental pollution, particularly, heavy metal contamination in soil. So Cr doped BN sheet is a promising material in modulating the band gap, through tuning the band gap it can be a highly efficient photocatalytic material and benefit humanity and protect the environment et al.

2021 ◽  
Author(s):  
Tingxing Zhao ◽  
Congcong Cao ◽  
Hengtao Wang ◽  
Xiangyu Shen ◽  
Hanjian Lai ◽  
...  

2020 ◽  
Vol 12 (19) ◽  
pp. 21772-21778 ◽  
Author(s):  
Qing-Qing Ye ◽  
Meng Li ◽  
Xiao-Bo Shi ◽  
Ming-Peng Zhuo ◽  
Kai-Li Wang ◽  
...  

Nano LIFE ◽  
2012 ◽  
Vol 02 (02) ◽  
pp. 1240005
Author(s):  
YUNLONG LIAO ◽  
ZHONGFANG CHEN

First-principles computations were performed to investigate the uniform bending effect on the electronic properties of armchair boron nitride nanoribbons (aBNNRs) with experimentally obtained width. For both bare and hydrogen-terminated aBNNRs, the band gaps only slightly depend on the uniform bending. The insensitivity of the band structures of BNNRs to the uniform bending makes them ideal materials when their wide band gap character is desired.


2020 ◽  
Vol 8 (28) ◽  
pp. 9755-9762 ◽  
Author(s):  
Itsuki Miyazato ◽  
Tanveer Hussain ◽  
Keisuke Takahashi

The band gaps in boron nitride/phosphorene (h-BN/P) heterostructures are investigated by single-atom-embedding via first principles calculations. The modified heterostructures are potential optoelectronic materials with tunable band gaps.


2007 ◽  
Vol 91 (23) ◽  
pp. 233501 ◽  
Author(s):  
Dong Ryeol Whang ◽  
Youngmin You ◽  
Se Hun Kim ◽  
Won-Ik Jeong ◽  
Young-Seo Park ◽  
...  

2011 ◽  
Vol 1331 ◽  
Author(s):  
Ka Xiong ◽  
Weichao Wang ◽  
Roberto Longo Pazos ◽  
Kyeongjae Cho

ABSTRACTWe investigate the electronic structure of interstitial Li and Li vacancy in Li7P3S11 by first principles calculations. We find that Li7P3S11 is a good insulator with a wide band gap of 3.5 eV. We find that the Li vacancy and interstitial Li+ ion do not introduce states in the band gap hence they do not deteriorate the electronic properties of Li7P3S11. The calculated formation energies of Li vacancies are much larger than those of Li interstitials, indicating that the ion conductivity may arise from the migration of interstitial Li.


Sign in / Sign up

Export Citation Format

Share Document