electron transporting layer
Recently Published Documents


TOTAL DOCUMENTS

272
(FIVE YEARS 105)

H-INDEX

37
(FIVE YEARS 12)

2021 ◽  
Author(s):  
Zi-Xuan Chen ◽  
Jia-Lin Sun ◽  
Qiang Zhang ◽  
Chong-Xin Qian ◽  
Ming-Zi Wang ◽  
...  

Abstract Interfacial charge recombination is a main issue causing the efficiency loss of the perovskite solar cells (PSCs). Here, ferroelectric Ba0.75Sr0.25TiO3 (BST) is introduced as a polarization tunable layer to promote the interfacial charge transfer of the PSCs. The coexistence of ferroelectric polarization and charge carriers in BST is confirmed by density functional theory (DFT) calculations. Experimental characterization demonstrates the polarization reversal and the existence of domain in BST film. The BST film conductivity is tested as 2.98×10-4 S/cm, which is comparable to the TiO2 being used as the electron transporting layer (ETL) in PSCs. The calculations results prove that BST can be introduced into the PSCs and the interfacial charge transfer can be tuned by ferroelectric polarization. Thus, we fabricated the BST-based PSCs with a champion power conversion efficiency (PCE) of 19.05% after poling, which is higher for 4% than that without poling.


Solar RRL ◽  
2021 ◽  
Author(s):  
Shih-Han Huang ◽  
Yen-Chi Wang ◽  
Kai-Chi Hsiao ◽  
Pei-Huan Lee ◽  
Hsueh-Chung Liao ◽  
...  

2021 ◽  
pp. 139012
Author(s):  
Kanyaporn Thubthong ◽  
Pisist Khumnorkeaw ◽  
Anusit Kaewprajak ◽  
Khathawut Lohawet ◽  
Wiyada Saennawa ◽  
...  

Solar Energy ◽  
2021 ◽  
Vol 228 ◽  
pp. 253-262
Author(s):  
Razieh Keshtmand ◽  
Mohammad Reza Zamani-Meymian ◽  
Fateme Mohamadkhani ◽  
Nima Taghavinia

2021 ◽  
Vol 2 ◽  
Author(s):  
Emanuele Smecca ◽  
Ajay Kumar Jena ◽  
Ioannis Deretzis ◽  
Salvatore Valastro ◽  
Salvatore Sanzaro ◽  
...  

Hybrid perovskites are one of the most popular materials nowadays due to their very exclusive properties. To mitigate costs, complexity, and environmental impact, in this work, we have prepared methylammonium lead iodide (MAPbI3) films by a two-step Low-Vacuum Proximity-Space-Effusion (LV-PSE). The LV-PSE method exploits the low vacuum and the short diffusion path from the precursor source to have high thermal energy and partial pressure of the sublimated species close to the substrate. To this aim, the substrate is located at a medium distance (∼2 cm) from the melting pots in a low-vacuum chamber at ∼4 × 10−2 mbar. In the first step, a PbI2 film is deposited on a substrate; in the second step, the conversion into MAPbI3 occurs via an adsorption-incorporation-migration mechanism through the evaporation of methylammonium iodide (MAI) reagents. To exploit the potential of the conversion reaction, 190 nm MAPbI3 layers are deposited on TiO2 substrates. The layers were characterized in terms of crystal structure by X-ray diffraction (XRD) analyses, which showed the exclusive presence of MAPbI3 confirming the complete conversion of the PbI2 film. Scanning Electron Microscopy (SEM) analyses revealed a flat uniform pinhole-free coverage of the substrates and good conformational coverage of the TiO2 underlayer. Transmission Electron Microscopy (TEM) analyses addressed the formation of the tetragonal phase and the absence of the amorphous phase in the film. Spectroscopic ellipsometry (SE) analyses were used to explore the optical properties and the stability of the MAPbI3 layer at different temperatures and ambient conditions. As proof of concept, solar cell architectures were prepared using TiO2 as Electron Transporting Layer (ETL), Spiro-OMeTAD as Hole Transporting Layer (HTL), and Au as a contact to exploit the new up-scalable and clean deposition method. Using just ∼190 nm thick layers, the best efficiency reached with this architecture was 6.30%.


2021 ◽  
pp. 3376-3385
Author(s):  
Hsin-Hsiang Huang ◽  
Hsinhan Tsai ◽  
Rathinam Raja ◽  
Shu-Ling Lin ◽  
Dibyajyoti Ghosh ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1020
Author(s):  
Kritsada Hongsith ◽  
Vasan Yarangsi ◽  
Sukrit Sucharitakul ◽  
Surachet Phadungdhitidhada ◽  
Athipong Ngamjarurojana ◽  
...  

In this work, a multi-electron transporting layer (ETL) for efficient perovskite solar cells is investigated. The multi-ETL consists of five conditions including SnO2, SnO2/SnOx, TiO2, TiO2/SnO2, and TiO2/SnO2/SnOx. The best performance of PSC devices is found in the SnO2/SnOx double-layer and exhibits a power conversion efficiency equal to 18.39% higher than the device with a TiO2 single-layer of 14.57%. This enhancement in efficiency can be attributed to a decrease in charge transport resistance (Rct) and an increase in charge recombination resistance (Rrec). In addition, Rct and Rrec can be used to explain the comparable power conversion efficiency (PCE) between a PSC with a SnO2/SnOx double-layer and a PSC with a triple-layer, which is due to the compensation effect of Rct and Rrec parameters. Therefore, Rct and Rrec are good parameters to explain the efficiency enhancement in PSC. Thus, the Rct and Rrec from the electrochemical impedance spectroscopy (EIS) technique is an easy and alternative way to obtain information to understand and characterize the multi-ETL on PSC.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tianyu Kong ◽  
Rui Wang ◽  
Ding Zheng ◽  
Junsheng Yu

Recently, tin oxide (SnO2) nanoparticles (NPs) have attracted considerable attention as the electron transporting layer (ETL) for organic solar cells (OSCs) due to their superior electrical properties, excellent chemical stability, and compatibility with low-temperature solution fabrication. However, the rough surface of SnO2 NPs may generate numerous defects, which limits the performance of the OSCs. In this study, we introduce a perylene diimide derivative (PDINO) that could passivate the defects between SnO2 NP ETL and the active layer. Compared with the power conversion efficiency (PCE) of the pristine SnO2 ETL–based OSCs (12.7%), the PDINO-modified device delivers a significantly increased PCE of 14.9%. Overall, this novel composite ETL exhibits lowered work function, improved electron mobility, and reduced surface defects, thus increasing charge collection efficiency and restraining defect-caused molecular recombination in the OSC. Overall, this work demonstrates a strategy of utilizing the organic–inorganic hybrid ETL that has the potential to overcome the drawbacks of SnO2 NPs, thereby developing efficient and stable OSCs.


Sign in / Sign up

Export Citation Format

Share Document