Decrease in Power Consumption of Hydraulic Systems of Modern Machine Tools

2015 ◽  
Vol 811 ◽  
pp. 45-49
Author(s):  
Dan Prodan ◽  
Anca Bucuresteanu ◽  
Adrian Motomancea ◽  
Emilia Balan

This paper shows several issues related to decrease in electric power consumption for hydraulic systems of modern machine tools, especially CNCs. A core element in the structure of such systems is the pneumo-hydraulic accumulator. Here, examples are shown for hydraulic systems destined to locking and unlocking of skids and to opening of tool holders. This paper shows mathematical models, diagrams, simulations and certain experimental executions.

Procedia CIRP ◽  
2018 ◽  
Vol 67 ◽  
pp. 87-92 ◽  
Author(s):  
Andreas Wirtz ◽  
Matthias Meiner ◽  
Petra Wiederkehr ◽  
Johanna Myrzik

2011 ◽  
Vol 8 (1) ◽  
pp. 233-238
Author(s):  
R.M. Bogdanov ◽  
S.V. Lukin

Oil and petroleum products transportation is characterized by a significant cost of electric power. Correct oil and petroleum products accounting and forecasting requires knowledge of many factors. The software for norms of electric power consumption analysis for the planned period was developed at the Ufa Scientific Center of the Russian Academy of Sciences. Based on the principles of the relational data model, a schematic diagram/arrangement for the main oil transportation objects was developed, which allows to hold the initial data and calculated parameters in a structured manner.


1985 ◽  
Vol 19 (9) ◽  
pp. 478-483
Author(s):  
S. B. Elakhovskii ◽  
S. I. Sorokina ◽  
E. N. Smirnova

2015 ◽  
Vol 23 (01) ◽  
pp. 1550002
Author(s):  
Sunhee Oh ◽  
Yong Cho ◽  
Rin Yun

The optimum operation conditions of a raw water source heat pump for a vertical water treatment building were derived by changing operation parameters, such as temperature of thermal storage tank, temperature and inlet air flow rate of the conditioned spaces, and circulating water flow rate between thermal storage tank and air handling unit (AHU) through dynamic simulator of a transient system simulation program (TRNSYS). Minimum electric power consumption was found at temperature of thermal storage tank, which was ranged 18–23°C for cooling season. In heating season, temperature 40–45°C brings the highest coefficient of performance (COP) and temperature range of 30–35°C brings the lowest power consumption. When the temperature of the conditioned spaces was controlled between 27–28°C for cooling season, and 18–20°C for heating season the minimum electric power consumption was obtained. Inlet air flow rate of 1.1 m3/h for the conditioned spaces shows the highest performance of the present system, and effects of circulating water flow rate between thermal storage tank and AHU on minimum electric power consumption of the system were negligible.


Sign in / Sign up

Export Citation Format

Share Document