Constructing Demand Response Models for Electric Power Consumption

Author(s):  
John D. Hobby
2011 ◽  
Vol 8 (1) ◽  
pp. 233-238
Author(s):  
R.M. Bogdanov ◽  
S.V. Lukin

Oil and petroleum products transportation is characterized by a significant cost of electric power. Correct oil and petroleum products accounting and forecasting requires knowledge of many factors. The software for norms of electric power consumption analysis for the planned period was developed at the Ufa Scientific Center of the Russian Academy of Sciences. Based on the principles of the relational data model, a schematic diagram/arrangement for the main oil transportation objects was developed, which allows to hold the initial data and calculated parameters in a structured manner.


1985 ◽  
Vol 19 (9) ◽  
pp. 478-483
Author(s):  
S. B. Elakhovskii ◽  
S. I. Sorokina ◽  
E. N. Smirnova

2015 ◽  
Vol 23 (01) ◽  
pp. 1550002
Author(s):  
Sunhee Oh ◽  
Yong Cho ◽  
Rin Yun

The optimum operation conditions of a raw water source heat pump for a vertical water treatment building were derived by changing operation parameters, such as temperature of thermal storage tank, temperature and inlet air flow rate of the conditioned spaces, and circulating water flow rate between thermal storage tank and air handling unit (AHU) through dynamic simulator of a transient system simulation program (TRNSYS). Minimum electric power consumption was found at temperature of thermal storage tank, which was ranged 18–23°C for cooling season. In heating season, temperature 40–45°C brings the highest coefficient of performance (COP) and temperature range of 30–35°C brings the lowest power consumption. When the temperature of the conditioned spaces was controlled between 27–28°C for cooling season, and 18–20°C for heating season the minimum electric power consumption was obtained. Inlet air flow rate of 1.1 m3/h for the conditioned spaces shows the highest performance of the present system, and effects of circulating water flow rate between thermal storage tank and AHU on minimum electric power consumption of the system were negligible.


Author(s):  
А. Voloshko ◽  
Ya. Bederak ◽  
T. Dzheria

Aims of this research are development of a complex statistical analysis algorithm for active electric power consumption data, consumption of energy resources and manufacturing products, implementation of statistical analysis in practice. Proposed parameters and criteria, which can help to technical staff in factories, to provide optimal and economical operating of supply and distribution systems as electricity, water, gas, heat, compressed air, etc. for production facilities, based on the collected active electric power consumption data for previous periods, information about consumption dynamic. It is concluded that the statistical analysis of the data, obtained for each type of engineering equipments (water supply and sewage, supply systems of compressed air, gas, electricity and steam) and various consumables coefficients (in the proposed algorithm) make possible to identify "weak areas" and to determine the most rational ways to optimize energy usage.


2021 ◽  
Vol 3 ◽  
pp. 12-17
Author(s):  
Sergey Karpenko ◽  
Nadezhda Karpenko

Electric power consumption along with a large variety of factors affecting it can be forecasted and modelled by using econometric forecasting methods, including time series and correlation and regression analysis. For the purpose of this research, electric power consumption in the Moscow Region, Russia, was modelled with consideration of economic and climate factors based on 2019–2020 power usage data. A multiplicative model for regional electric power consumption and correlations between electric power consumption and an air temperature as well as a total number of cloudy days a month were built. The results will be helpful for analyzing and forecasting of processes involved in power consumption.


Sign in / Sign up

Export Citation Format

Share Document