Volumetric Changes of the UHPC Matrix and its Determination

2016 ◽  
Vol 827 ◽  
pp. 215-218 ◽  
Author(s):  
David Čítek ◽  
Milan Rydval ◽  
Jiří Kolísko

Research in the Ultra-High Performance Concrete applications field is very important. Current experiences shows that the structure design should be optimize due to relatively new fine-grained cement-based Hi-Tech material with excellent mechanical and durability properties. It is not sure if some of the volumetric changes like creep or shrinkage has or has not an impact on an advantage for the construction and for the structure design. The effect of the shrinkage and creep of common used concretes are well known and well described at publications but the effect of volumetric changes of the UHPC is mostly unknown because of the fact that some of experimental tests are long term and the development of UHPC is still in its basics. A lot of works are focused on a basic mechanical properties and durability tests.

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2455
Author(s):  
Jiayuan He ◽  
Weizhen Chen ◽  
Boshan Zhang ◽  
Jiangjiang Yu ◽  
Hang Liu

Due to the sharp and corrosion-prone features of steel fibers, there is a demand for ultra-high-performance concrete (UHPC) reinforced with nonmetallic fibers. In this paper, glass fiber (GF) and the high-performance polypropylene (HPP) fiber were selected to prepare UHPC, and the effects of different fibers on the compressive, tensile and bending properties of UHPC were investigated, experimentally and numerically. Then, the damage evolution of UHPC was further studied numerically, adopting the concrete damaged plasticity (CDP) model. The difference between the simulation values and experimental values was within 5.0%, verifying the reliability of the numerical model. The results indicate that 2.0% fiber content in UHPC provides better mechanical properties. In addition, the glass fiber was more significant in strengthening the effect. Compared with HPP-UHPC, the compressive, tensile and flexural strength of GF-UHPC increased by about 20%, 30% and 40%, respectively. However, the flexural toughness indexes I5, I10 and I20 of HPP-UHPC were about 1.2, 2.0 and 3.8 times those of GF-UHPC, respectively, showing that the toughening effect of the HPP fiber is better.


1996 ◽  
Vol 23 (5) ◽  
pp. 1129-1136
Author(s):  
Axel-Pierre Bois ◽  
Mohamed Lachemi ◽  
Gérard Ballivy

The Portneuf Bridge, built in 1992, is the first air-entrained high-performance concrete bridge in North America. To understand its short and long term behaviour, an auscultation program has been set. Hence, a cylindrical concrete inclusion of the Université de Sherbrooke was installed in one of the abutments of the bridge. The aim of this study is to present the first results thus acquired. The analysis of the results allowed to calculate the coefficient of thermal expansion of the concrete and to assess deformation variations due to shrinkage and creep and the effects of rebar–concrete interaction in the upper abutment region. Moreover, the presence of thermal gradients, which creates nonisotropic deformations, has been established. Key words: high-performance concrete, deformations, thermal gradients, instrumentation, bridge, monitoring. [Journal translation]


2013 ◽  
Vol 405-408 ◽  
pp. 2847-2850
Author(s):  
Wu Jian Long ◽  
Wei Lun Wang ◽  
Qi Ling Luo ◽  
Bi Qin Dong

In order to understand the influence of mixture parameters on ultra-high strength self-consolidating concrete (UHS-SCC) behaviour, an experimental design was carried out in this investigation. In total, 19 SCC mixtures were prepared to determine several key responses that affect the slump flow and compressive strength of UHS-SCC. The statistical models derived from the factorial design approach can be used to quantify the effect of mixture parameters and their coupled effects on fresh and mechanical properties of SCC.


2016 ◽  
Vol 711 ◽  
pp. 157-162 ◽  
Author(s):  
David Citek ◽  
Milan Rydval ◽  
Stanislav Rehacek ◽  
Jiří Kolísko

The Ultra High Performance Concrete (UHPC) is a very promising material suitable for application in special structures. However, the knowledge of performance of this relatively new material is rather limited. The exceptional mechanical properties of UHPC allow for a modification of the design rules, which are applicable in ordinary or high strength concrete. This paper deals in more detail with impact of thermal stress on bond properties between prestressing strands and UHPC and an influence of high temperature to final material properties of different UHPC mixtures. Specimens in the first experimental part were subjected to the cycling freeze-thaw testing. The relationship between bond behavior of both type of material (UHPC and ordinary concrete) and effect of cycling freeze-thaw tests was investigated. The second part of experimental work was focused on mechanical properties of UHPC exposure to the high temperature (Tmax = 200°C to Tmax = 1000°C). Tested mechanical properties were compressive and flexural strengths, the fracture properties will be presented in the next paper. The obtained experimental data serve as a basis for further systematic experimental verification and more accurate information about the significantly higher material properties of UHP(FR)C and its behavior in extreme conditions.


Sign in / Sign up

Export Citation Format

Share Document